期刊文献+

基于机器视觉的苹果在线分级 被引量:17

Research on apple online classification based on machine vision
下载PDF
导出
摘要 通过CCD相机动态采集苹果两个面的实时图像,提出了泛洪填充+自适应Ostu阈值分割算法提取苹果的轮廓,采用最小外接圆法对苹果上表面图像进行处理得到苹果果径,采用最小外接矩形法对苹果侧表面图像进行处理提取苹果果形特征;将图像进行RGB到HSV空间转换,提取苹果的着色度、果锈,以及疤痕特征,采用基于改进粒子群算法的SVM决策树的分类方法进行苹果的分级。结果表明,该方法对特级果、一级果、二级果和等外果的识别准确率分别达96%,94%,98%,98%,分级速率达4个/s,可以满足苹果在线分级的要求。 Using CCD camera to dynamically collect real-time images of two sides of the apple,a flood filling+adaptive Ostu threshold segmentation algorithm is proposed to extract the outline of the apple.The minimum outer circle method is used to process the upper surface image of the apple to obtain the fruit diameter of the apple.Rectangular method is used to extract the apple's fruit shape features by processing the apple's side surface image;the image is converted from RGB to HSV space to extract the apple's coloring degree,fruit rust,and scar features,and the classification of the SVM decision tree based on the improved particle swarm algorithm Method for grading apples.The experimental results show that the recognition accuracy rates of extra-grade fruits,first-grade fruits,second-grade fruits and other outer fruits have reached 96%,94%,98%and 98%,respectively,and the classification rate has reached 4 s-1,which can satisfy the requirement for online-grading apples.
作者 李颀 胡家坤 LI Qi;HU Jia-kun(College of Electrical and Control Engineering,Shaanxi University of Science and Technology,Xi'an,Shaanxi 710021,China)
出处 《食品与机械》 北大核心 2020年第8期123-128,153,共7页 Food and Machinery
基金 陕西省农业主导产业发展项目(编号:201806117YF05NC13[1]) 陕西省科技厅农业科技攻关项目(编号:2015NY028)。
关键词 苹果分级 机器视觉 阈值分割 特征提取 SVM 粒子群 apple grading machine vision threshold segmentation feature extraction SVM particle swarm
  • 相关文献

参考文献9

二级参考文献58

共引文献104

同被引文献189

引证文献17

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部