期刊文献+

基于PANAG模型的攻击路径预测研究 被引量:2

Research on Attack Path Prediction Based on PANAG Model
下载PDF
导出
摘要 为准确预测网络攻击路径信息,提出一种基于概率属性网络攻击图(PANAG)的攻击路径预测方法。利用通用漏洞评分系统对弱点属性进行分析,设计节点弱点聚类算法以减少弱点数目,同时提出概率属性网络攻击图生成算法GeneratNAG,从而避免攻击图生成后可能存在的状态爆炸问题。综合分析影响网络攻击可行性的多方面因素,引入攻击价值的概念,提出一种基于攻击价值的路径生成算法BuildNAP,以消除冗余路径。在此基础上,通过PANAG模型定量分析基于入侵意图的不同入侵路径的可能性,预测攻击者最可能采取的攻击路径。实验结果表明,该方法的准确率与执行效率均较高。 In order to accurately predict network attack paths,this paper proposes an attack path prediction method based on Probabilistic Attribute Network Attack Graph(PANAG).The method uses the common vulnerability scoring system to analyze the vulnerability attributes,and designs a Node Vulnerability Clustering(NVC)algorithm to reduce the number of vulnerabilities.Also,the probability attribute network attack graph generation algorithm,GeneratNAG,is given to avoid the possible state explosion of generated attack graphs.Then a comprehensive analysis of factors that influence the feasibility of cyberattacks is made,and on this basis the concept of attack value is introduced.A path generation algorithm based on attack value,BuildNAP,is proposed to eliminate redundant paths.Finally,the PANAG model is used to quantitatively analyze the possibility of different intrusion paths based on intrusion intent,and predict the attack path that the attacker is most likely to take.Experimental results demonstrate the accuracy and execution efficiency of the proposed method.
作者 王辉 赵雅 张娟 刘琨 WANG Hui;ZHAO Ya;ZHANG Juan;LIU Kun(College of Computer Science and Technology,Henan Polytechnic University,Jiaozuo,Henan 454000,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第9期154-162,共9页 Computer Engineering
基金 国家自然科学基金(61300216)。
关键词 状态变迁 节点弱点聚类 攻击价值 攻击可行性 入侵意图 state transition Node Vulnerability Clustering(NVC) attack value attack feasibility intrusion intent
  • 相关文献

参考文献10

二级参考文献116

  • 1程叶霞,姜文,薛质,程叶坚.基于攻击图模型的多目标网络安全评估研究[J].计算机研究与发展,2012,49(S2):23-31. 被引量:9
  • 2陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. 被引量:342
  • 3冯萍慧,连一峰,戴英侠,鲍旭华.基于可靠性理论的分布式系统脆弱性模型[J].软件学报,2006,17(7):1633-1640. 被引量:31
  • 4Ortalo R,Deswarte Y,Kaaniche M.Experimenting withquantitative evaluation tools for monitoring operational se-curity[J].IEEE Transactions on Software Engineering,1999,25(05):633-650.
  • 5Swiler L P,Phillips C,Ellis D.Computer attack graphgeneration tool[C] ∥Proc of the Second DARPA Informa-tion Survivability Conference&Exposition(DISCEX II).Anaheim:[s.n.] ,2001:307-321.
  • 6Ammann P,Wijesekera D,Kaushik S.Scalable graph-based network vulnerability analysis[C] ∥Proc of the 9thACM Conference on Computer and Communications Secu-rity.New York:[s.n.] ,2002:217-224.
  • 7Noel S,Jajodia S.Managing attack graph complexitythrough visual hierarchical aggregation[C] ∥Proc of the2004 ACM Workshop on Visualization and Data Miningfor Computer Security.Washington DC:[s.n.] ,2004:109-118.
  • 8Zhang Tao,Hu Mingzeng,Li Dong.An effective methodto generate attack graph[C] ∥Proc of International Con-ference on Machine Learning and Cybernetics.Guang-zhou:[s.n.] ,2005:3926-3931.
  • 9The MITRE Corporation.Common attack pattern enumer-ation and classification[EB/OL].2011.http:∥capec.mitre.org/data/dictionary.html.
  • 10Anderson JP. Computer security threat monitoring and surveillance. Technical Report, Contract 79F26400. Fort Washington,Pennsylvania, James P. Anderson Company, 1980.

共引文献196

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部