摘要
在构建交通标志颜色矩阵的基础上,进行颜色标准化映射分析,确定交通标志颜色标准化的映射目标颜色集合。分析交通标志三角中心区域和环状区域RGB分量统计数据,提出一种基于区域RGB统计数据的图像粗分类方法,实现基于图像粗分类的参数设置和亮度增强,并基于矩形中心区域的亮度统计数据,提出一种图像逆光判定方法。在对图像进行预处理后,基于YIQ颜色空间和HSV颜色空间,级联基于Y值和S值二值化的黑白色分类器、基于H值可变区间划分的红绿蓝黄色分类器、基于YIQ空间的红棕色分类器和基于图像粗分类的黑白色补偿分类器,实现颜色标准化处理。利用中国交通标志检测数据集构建测试数据集进行实验,结果表明,该方法较好地实现了交通标志颜色标准化映射,具有较高的成功率。
Based on a constructed traffic sign color matrix,the analysis of color standardization mappings is carried out,and the mapping target color set of traffic sign color standardization is determined.Then the statistical data of RGB componentsin triangle center area and the ring area of the traffic sign is analyzed,and on this basis,a coarse image classification method based on the statistical data of regional RGB is proposed to implement parameter setting and brightness enhancement.Also,based on the statistical data of brightness of the rectangular center area,this paper proposes a determination method of image backlight.After image preprocessing,based on YIQ color space and HSV color space,four classifiers are cascaded,which are black-white color classifier based on Y value and S value binarization,red-green-blue-yellow classifier based on the variable interval division of H value,red-brown classifier based on YIQ space and black-white color compensation classifier based on coarse image classification to implement color standardization.Finally,the test data set is constructed based on the Chinese traffic sign detection data set,and experimental results show that the proposed color standardization method can realize traffic sign color standardization mapping at a high success rate.
作者
刘洋
黄大荣
刘洋
钟蔚
LIU Yang;HUANG Darong;LIU Yang;ZHONG Wei(School of Information Science and Engineering,Chongqing Jiaotong University,Chongqing 400074,China;Department of Logistics Command,Army Logistics University,Chongqing 401331,China)
出处
《计算机工程》
CAS
CSCD
北大核心
2020年第9期233-241,共9页
Computer Engineering
基金
国家自然科学基金(61903053)
重庆市教育委员会科学技术研究项目(KJQN201900702)。
关键词
颜色标准化
交通标志
粗分类
级联分类
多颜色空间
color standardization
traffic sign
coarse classification
cascade classification
multi-color space