期刊文献+

二阶拟线性中立型时滞微分方程的振动性 被引量:1

Oscillation of Second Order Quasilinear Neutral Delay Differential Equations
下载PDF
导出
摘要 本文主要研究了一类二阶拟线性中立型微分方程的振动性.文中运用广义Riccati变换,积分平均技巧和Hardy-Littlewood-Polya不等式给出了微分方程若干新的振动准则,与其它现有的结果进行比较,所得结果推广和改进了最近一些文献中的关于某些振动性的结果. In this paper,we mainly study the oscillation of a class of second order quasilinear neutral delay differential equations.By use of the generalized Riccati transformation,integral averaging technique and an inequality due to Hardy-Littlewood-Polya,some new oscillation criteria are established for the equations above.Compare with other existing results,the results extend and improve some known results in the cited literature.
作者 李文娟 李书海 汤获 LI Wen-juan;LI Shu-hai;TANG Huo(School of Mathematics and Statistics,Chifeng University,Chifeng 024000;Institute of Applied Mathematics,Chifeng University,Chifeng 024000)
出处 《工程数学学报》 CSCD 北大核心 2020年第4期469-477,共9页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11761006,11762001,11561001) 内蒙古自然科学基金(2017MS0113,2018MS01026) 内蒙古高校青年科技英才支持计划资助项目(NJYT-18-A14) 内蒙古高等学校科研基金(NJZY17301).
关键词 微分方程 时滞 拟线性 振动性 二阶 differential equations delay quasilinear oscillation second order
  • 相关文献

参考文献1

二级参考文献17

  • 1Hale J K, Lunel S V. Introduction to Functional Differential Equations. New York: Springer-Verlag, 1993.
  • 2Leighton W. The detection of the oscillations of solutions of a second order linear differential equation. Duke Math J, 1950, 17:57-62.
  • 3Grammatikopoulos M K, Ladas G, Meimaridou A. Oscillations of second order neutral delay differential equations. Rad Math, 1985, 1:267-274.
  • 4Sun Y G, Meng F W. Note on the paper of Dzurina and Stavroulakis. Appl Math Comput, 2006, 174: 1634-1641.
  • 5Liu H D, Meng F W, Liu P H. Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation. Appl Math Comput, 2012, 219:2739-2748.
  • 6Agarwal R P, Shieh S L, Yeh C C. Oscillation criteria for second order retarded differential equations. Math Comput Modelling, 1997, 26:1-11.
  • 7Baculikova B, Li T, Dzurina J. Oscillation theorems for second order super-linear neutral differential equations. Mathematica Slovaca, 2013, 63:123 134.
  • 8Dong J G. Oscillation behavior of second-order nonlinear neutral differential equations with deviating arguments. Comput Math Appl, 2010, 59:3710 3717.
  • 9Erbe L, Hassan T S, Peterson A. Oscillation of second-order neutral differential equations. Adv Dynam Syst Appl, 2008, 3:53 71.
  • 10Liu L, Bai Y. New oscillation criteria for second order nonlinear delay neutral differential equations. J Comput Appl Math, 2009, 231:657--663.

共引文献25

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部