期刊文献+

基于多特征融合的舞蹈动作识别技术研究 被引量:1

Dance action recognition method based on multi feature fusion
下载PDF
导出
摘要 针对舞蹈动作存在复杂的姿态变化,导致舞蹈动作识别准确度低的问题。文中设计了一种多特征融合的舞蹈动作识别算法,该算法首先通过一个特征金字塔网络提取舞蹈动作的特征,再采用一个多特征融合模块来融合多路特征,以此提升算法对复杂姿态的估计,最终完成舞蹈动作识别。在数据集上的测试与分析结果表明,该算法可针对Balletto舞蹈视频数据库进行识别,且能够有效提升舞蹈动作识别准确度,从而实现对舞蹈演员的动作矫正功能。 In view of the complex posture changes in dance movements,the accuracy of dance movement recognition is low.In this paper,we design a multi feature fusion algorithm for dance action recognition.Firstly,we extract the features of dance action through a feature pyramid network,and then use a multi feature fusion module to fuse multiple features,so as to improve the algorithm's estimation of complex posture,and finally complete the dance action recognition.The test and analysis results on the dataset show that the algorithm can identify the balletto dance video database,and can effectively improve the accuracy of dance action recognition,so as to achieve the action correction function of dancers.
作者 毕雪超 BI Xue-chao(Xi’an Vocational and Technical College of Aeronautics and Astronautics,Xi’an 710089,China)
出处 《电子设计工程》 2020年第18期189-193,共5页 Electronic Design Engineering
基金 陕西省高等教育工作委员会研究课题(2017FKT03) 西航职院2018年度科研计划项目(18XHGZ-011)。
关键词 特征金字塔 人体姿态估计 多路径 多特征融合 动作识别 featurepyramid humanpostureestimation multi-path multifeaturefusion motionrecognition
  • 相关文献

参考文献6

二级参考文献59

  • 1向坚,俞坚.基于集成多示例学习决策树分析的三维运动检索[J].计算机研究与发展,2008,45(z1):305-309. 被引量:5
  • 2黄波士,陈福民.运动捕捉及其在动画制作中的应用[J].计算机工程,2005,31(13):168-170. 被引量:11
  • 3Agarwal A and Triggs B. Recovering 3D human pose from monocular images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(1): 44-58.
  • 4Bissacco A, Yang Ming-hsuan, and Soatto S. Fast human pose estimation using appearance and motion via multi-dimensional boosting regression. [C] CVPR 2007, Minneapolis, US, 2007: 1-8.
  • 5Poppe R and Pod M. Comparison of silhouette shape descriptors for example-based human pose recovery[C]. Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition. Southampton, 2006: 541-546.
  • 6Felzenszwalb P F and Huttenlocher D P. Pictorial structures for object recognition[J]. International Journal of Computer Vision, 2004, 61(1): 55-79.
  • 7Ramanan D. Learning to parse images of articulated bodies[C]. NIPS 2006, Cambridge, 2006: 1129-1136.
  • 8Andriluka M, Roth S, and Schiele B. Pictorial structures revisited: people detection and articulated pose Estimation[C]. CVPR 2009, Miami, FL, USA, 2009: 1014-1021.
  • 9Zhang Xiao-qin and Li Chang-cheng, et al.. Efficient human pose estimation via parsing a tree structure based human model[C]. ICCV 2009, Kyoto, 2009: 1349-1356.
  • 10Sapp B, Jordan C, and TaskarB. Adaptive pose priors for pictorial structures[C]. CVPR 2010, San Francisco, 2010: 422-428.

共引文献53

同被引文献14

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部