摘要
为提高包裹自提服务的运作效率,研究了带有处理量优化的选址分配问题,在考虑包裹处理量规模约束的基础上,建立了多目标优化模型。采用NSGA-Ⅱ算法求解该模型,同时对处理量的临界参数和覆盖距离进行灵敏度分析。结果表明,企业的选址成本随自提量的增加而增加,适当提高处理量的临界值可以增加规模效应,且自提量和成本之间存在“边际递减”规律。该研究可以为企业提高自提点处理量、降低成本和优化自提点网络提供决策支持。
In order to optimize pickup point location problem for the operational efficiency of pickup point service network,a multi-objective programming model with factor of processing capacity constraint is put forward.The non-dominated sorting genetic algorithm(NSGA-Ⅱ)is set up to solve this model while a sensitive analysis is conducted on the critical parameters of the processing capacity and coverage distance.The result shows that the cost of pickup point location increases with the amount of self-lifting.Increasing the critical of the processing capacity embodies scale effect and there is a"marginal diminishing"law between self-raising amount and cost.This research can provide decision support for enterprises to reduce costs and increase self-raising amount as well as to optimize the network of pickup point.
作者
黄露
纪延光
HUANG Lu;JI Yanguang(Department of Management,China University of Mining and Technology,Xuzhou 221116,China;不详)
出处
《武汉理工大学学报(信息与管理工程版)》
CAS
2020年第4期326-331,共6页
Journal of Wuhan University of Technology:Information & Management Engineering
基金
国家自然科学基金项目(71571085)
“六大人才高峰”高层次人才选拔培养项目(XYDXX-140)
江苏省高校自然科学基金项目(19KJB580015)
江苏省高校哲学社会科学基金项目(2019SJA0155).
关键词
自提点
多目标规划
NSGA-Ⅱ
规模临界约束
处理量优化
pickup point
multi-objective optimization
NSGA-Ⅱ
critical scale constraint
package handing capacity optimization