期刊文献+

基于CNN-LSTM的混凝土坝渗流预测 被引量:11

Seepage Prediction of Concrete Dams Based on CNN-LSTM
下载PDF
导出
摘要 建立高性能的混凝土坝渗流预测模型是渗流安全监控的重要手段,也是渗流安全性态评价的基础,结合卷积神经网络(CNN)和长短期记忆神经网络(LSTM)两种深度学习算法,构建混凝土坝渗流预测模型(CNN-LSTM),该模型先利用CNN提取渗流监测时间序列的特征,然后利用LSTM生成特征描述,建立输入与输出间的映射关系,实现对混凝土坝的渗流预测。工程实例应用表明,CNN-LSTM模型在混凝土坝渗流预测应用中的数据拟合能力和预测精度较好,且不易陷入局部最优解,可为混凝土坝的渗流预测和安全监控提供科学依据。 High performance seepage prediction model of concrete dam is a vital procedure for dam seepage monitoring.It is also the foundation of dam seepage evaluation.Combining two deep learning algorithms of convolutional neutal networks(CNN)and long short-term memory(LSTM),a concrete dam seepage prediction model(CNN-LSTM)was constructed.The features of the time series of seepage monitoring were extracted with the CNN.And then the LSTM was used to generate the feature descriptions.The relationship between the inputs and outputs was established to realize the seepage prediction of concrete dams.The applicability of this model was illustrated using an engineering case.The results show that the CNN-LSTM model has good data fitting ability and prediction accuracy in the application of concrete dam seepage prediction,and it can avoid falling into the local optimal solution,which provides a scientific support on the dam seepage prediction and safety monitoring.
作者 岳明哲 陈旭东 李俊杰 YUE Ming-zhe;CHEN Xu-dong;LI Jun-jie(School of Water Conservancy Engineering,Zhengzhou University,Zhengzhou 450001,China)
出处 《水电能源科学》 北大核心 2020年第9期75-78,共4页 Water Resources and Power
基金 国家自然科学基金项目(51609217)。
关键词 混凝土坝 渗流预测 深度学习 CNN LSTM concrete dam seepage prediction deep learning CNN LSTM
  • 相关文献

参考文献9

二级参考文献34

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2王道席.水库安全设计与垮坝风险[J].水利水电科技进展,1995,15(1):17-24. 被引量:16
  • 3林剑艺,程春田.支持向量机在中长期径流预报中的应用[J].水利学报,2006,37(6):681-686. 被引量:114
  • 4ICOLD. Lessons from dam incidents [ R ]. Paris : [ s. n. ] , 1973.
  • 51COLD. Deterioration of Dams and Reservoirs[ R ]. Paris: [ s. n. ], 1983.
  • 6ICOLD. Statistical Analysis of Dam Failures[ R]. Paris: [ s. n. ], 1995.
  • 7U. S, Commission On Large Dam ( USCOLD). Committee on Failures and Accidents to Large Dams: Lessons from dam incidents[ R]. New York: [ s. n. ] ,1975.
  • 8U. S,Commission On Large Dam ( USCOLD). Committee on Failures and Accidents to Large Dams: Lessons from dam incidents Ⅱ [ R]. New York: [ s. n. ] ,1988.
  • 9CHENG S T. Statistics on dam failures [ C ]//Reliablility and uncertaint analises in hydraulic design. New York:[ s. n. ] , 1993.
  • 10Tatalovich J, Harris D. Comparison of Failure Mode from Risk Assessment and Historical Data for Bureau of Reclamation Dams [ R ]. Denver: Bureau of Reclamation, 1998.

共引文献198

同被引文献153

引证文献11

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部