期刊文献+

面向加密数据的安全图像分类模型研究综述 被引量:4

A Survey on Encrypted Image Recognition Models
下载PDF
导出
摘要 自2012年AlexNet模型提出以来,图像分类技术研究进入了深度学习时代.模型分类能力的提高使得技术的实际应用变得普及,许多企业将图像分类与云计算等技术结合,为用户提供各类便捷服务.但是模型的广泛使用带来了巨大的图像数据隐私泄漏风险.这一问题严重阻碍了图像分类技术的应用与发展.为此研究人员尝试将同态加密和安全多方计算等密码学技术与图像分类模型相结合,设计隐私保护方案.由于引入隐私保护会对模型的可用性(执行速度和分类精度)造成影响,因此兼顾安全性与可用性成为研究重点.本文对基于加密技术的图像分类模型隐私保护研究进行了全面调研,介绍了常用密码学技术的原理和适用性;依据模型使用场景的不同将问题分为模型推理和训练两类,对每一类问题当前的研究进展进行了详细介绍,比较了不同方案的特点和效果.最后基于当前研究的不足与难点,对本问题未来的研究方向做了展望. Since the introduction of the AlexNet in 2012,the research for image recognition has entered the era of deep learning.The improvement of the model’s ability has made the application of image recognition popular.Many companies deploy image recognition models with cloud computing to provide users various convenient services.However,the widespread use of models has brought generous image data leakage risks,which seriously hinders the application and development of image recognition technology.To this end,researchers have tried to combine cryptography,such as homomorphic encryption and secure multi-party computation,with image recognition models to design privacy-preserving schemes.The introduction of privacy-preserving technology affects the usability of models(computational efficiency and classification accuracy),therefore,balancing security and usability becomes a research hotspot.In this paper,a comprehensive survey on encryption based privacy protection for image classification is given,and the principles and applicability of various cryptographic techniques are introduced.According to different application scenarios of the model,the problems are divided into two types:model inference and training.The current research progress is described in detail according to these two types of problems.Finally,according to the shortcomings and difficulties of the current research,several future research directions are proposed.
作者 孙隆隆 李辉 于诗文 王迎雪 SUN Long-Long;LI Hui;YU Shi-Wen;WANG Ying-Xue(State Key Laboratory on Integrated Services Networks,Xidian University,Xi’an 710071,China;School of Cyber Engineering,Xidian University,Xi’an 710126,China;National Engineering Laboratory for Public Safety Risk Perception and Control by Big Data(PSRPC),China Academy of Electronics and Information Technology,Beijing 100041,China)
出处 《密码学报》 CSCD 2020年第4期525-540,共16页 Journal of Cryptologic Research
基金 社会安全风险感知与防控大数据应用国家工程实验室主任基金 国家自然科学基金(61972309,61672408) 教育部中央高校基本科研业务费(JB181505) 陕西省自然科学基础研究计划(2018JM6073)。
关键词 图像分类 深度学习 隐私保护 同态加密 安全多方计算 image recognition deep learning privacy-preserving homomorphic encryption secure multi-party computation
  • 相关文献

参考文献4

二级参考文献20

  • 1李亚秀,刘国华.关系数据库中字符数据的保序加密方法[J].无线电工程,2006,36(4):1-3. 被引量:6
  • 2Yao A.. Protocols for secure computations. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science, Los Angeles, 1982, 160~164
  • 3Golderich O., Micali S., Wigderson A.. How to play any mental game. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing, New York, 1987, 218~229
  • 4Lindell Y.. On the composition of secure multi-party protocols[Ph.D. dissertation]. The Weizmann Institute of Science, Israel, 2002
  • 5Du Wenliang. A study of several specific secure two-party computation problems[Ph.D. dissertation]. Purdue University,USA, 2000
  • 6Cachin C., Micali S., Stadler M.. Computationally private information retrieval with polyogarithmic communication. In: Proceedings of Eurocrypt'99, Prague, Czech Republic, 1999, 308~318
  • 7Chor B., Gilboa N.. Computationally private information retrieval(extended abstract). In: Proceedings of the 29th ACM Symposium on Theory of Computing, El Paso, Texas, USA, 1997, 304~313
  • 8Du Wenliang, Atallah M.J.. Privacy-preserving cooperative scientific computations. In: Proceedings of the 14th IEEE Computer Security Foundations Workshop, Nova Scotia, Canada, 2001, 273~282
  • 9Luo Wen-Jun, Li Xiang. A study of secure multi-party statistical analysis. In: Proceedings of IEEE International Conference on Computer Networks and Mobile Computing, Shanghai, 2003, 377~382
  • 10Luo Wen-Jun, Li Xiang. A study of secure multi-party elementary function computation protocols. In: Proceedings of the 3rd International Conference on Information Security, Shanghai, 2004, 5~12

共引文献59

同被引文献31

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部