期刊文献+

Ofloxacin loaded M0S2 nanoflakes for synergistic mild-temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria 被引量:10

原文传递
导出
摘要 Antibiotic resistance is an increasingly serious threat to global public health, which can lead to the decrease of the effectiveness ofantibiotics. The combination therapy of antibiotic and mild temperature photothermal therapy (PTT) is adopted to address this issue inthis work. An antibiotic-loaded nanoplatform is fabricated based on two-dimensional (2D) molybdenum disulfide (M0S2) nanoflakesas effective near-infrared (NIR) photothermal agent. The M0S2 nanoflakes is modified with positively charged quaternized chitosan(QCS) to improve the dispersion stability and enhance the interaction between M0S2 nanoflakes and bacterial membrane. TheQCS modified M0S2 nanoflakes (QCS-M0S2) is expected to adhere onto the membrane of methicillin-resistant Staphylococcusaureus (MRSA) and depolarize the bacterial membrane by local hyperthermia under NIR irradiation. A first-line antibiotic, ofloxacin(OFLX), can be loaded onto QCS-M0S2 by π-π stacking and hydrophobic interaction. Due to the combined antibiotic-photothermaltherapy, superior bactericidal ability was achieved at mild temperature (45℃) and low antibiotic concentration. Such synergisticmild-temperature photothermal/antibiotic therapy can not only avoid the damage to neighboring tissue by PTT, but also reduce thedevelopment of drug resistance, providing an innovative way for the treatment of bacterial infections.
出处 《Nano Research》 SCIE EI CAS CSCD 2020年第9期2340-2350,共11页 纳米研究(英文版)
基金 Financial support from the National Natural Science Foundation of China(No.21774110) Fundamental Research Funds for the Central Universities(Nos.2019QNA4063 and 2019XZZX005-1-03)is gratefully acknowledged.
  • 相关文献

参考文献6

二级参考文献65

  • 1Lin. J. J.; Lin, W. C.; Dong, R. X.; Hsu, S. H. The cellular responses and antibacterial activities of silver nanoparticles stabilized by different polymers. Nanotechnology 2012, 23, 065102.
  • 2Nederberg, F.; Zhang. Y.; Tan, J. P. K.; Xu, K. J.; Wang, H. Y.; Yang. c., Gao, S. J.; Guo, X. D.; Fukushima, K.; u, L. J; Hedrick, J. L.; Yang, Y. Y. Biodegradable nanostructures with selective lysis of microbial membranes. Nat. Chem. 2011, 3, 409-414.
  • 3Rosemary, M. J.; MacLaren, I.; Pradeep, T. Investigations of the antibacterial properties of ciprotloxacin@Si02? Langmuir 2006,22, 10125-10129.
  • 4Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A. Oligonuc1eotidemodified gold nanopartic1es for intracellular gene regulation. Science 2006, 312, 1027-1030.
  • 5Bowman, M. C.; Ballard, T. E.; Ackerson, C. J.; Feldheim, D. L.; Margolis, D. M.; Melander, C. Inhibition of HIV fusion with multivalent gold nanoparticles.J.Am. Chem. Soc. 2008, 130,6896-6897.
  • 6Gu, H. W.; Ho, P. L.; Tong, E.; Wang, L.; Xu, B. Presenting vancomycin on nanopartic1es to enhance antimicrobial activities. NanoLett. 2003, 3,1261-1263.
  • 7Zhao, Y. Y.; Tian, Y.; Cui, Y.; Liu, W. W.; Ma, W. S.; Jiang, X. Y. Small molecule-capped gold nanopartic1es as potent antibacterial agents that target gram-negative bacteria.J.Am. Chem. Soc. 2010,132,12349-12356.
  • 8Dal Lago, V.; de Oliveira, L. F.: Goncalves, K. D.; Kobarg, J.; Cardoso, M. B. Size-selective silver nanopartic1es: Future of biomedical devices with enhanced bactericidal properties.J.Mater. Chem. 2011, 21,12267-12273.
  • 9Abeylath, S. c.; Turos, E. Drug delivery approaches to overcome bacterial resistance to -Iactam antibiotics. Expert Opin. Drug Deliv. 2008, 5, 931-949.
  • 10Weir, E.; Lawlor, A.; Whelan, A: Regan, F. The use of nanoparticles in anti-microbial materials and their characterization. Analyst 2008, 133,835-845.

共引文献42

同被引文献52

引证文献10

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部