摘要
建立最小化makespan的装配作业车间分批调度模型,利用遗传算法构建基于整体集成优化策略、分层迭代优化策略和双层进化策略的求解算法。它们的区别在于处理批量划分问题和子批调度问题的联合优化机制不同。最后通过仿真实验对比了几类算法的求解效果和收敛速度,并分析了它们的适应性特点。
A batch scheduling model of assembly job shop with minimum makespan is established.The genetic algorithm is used to construct a solution algorithm based on the overall optimization strategy,hierarchical iterative optimization strategy and bilevel evolution strategy.The difference between them is the optimization mechanisms to deal with the batch division problem and the sub-batch scheduling problem.Finally,through the simulation experiment,the solution effect and convergence speed of several kinds of algorithms are compared,and adaptability are also analyzed.
作者
曾垂飞
刘建军
陈庆新
毛宁
ZENG Chuifei;LIU Jianjun;CHEN Qingxin;MAO Ning(Guangdong CIM Provincial Key Laboratory,Guangdong University of Technology,Guangzhou 510006,China)
出处
《工业工程》
北大核心
2020年第4期174-182,共9页
Industrial Engineering Journal
基金
国家自然科学基金资助项目(51975129,71572049,61973089)
广东省特支计划科技创新青年拔尖人才资助项目(2016TQ03X364)
广东省自然科学基金资助项目(2019A1515012158)
广州市珠江科技新星项目(201710010004)。
关键词
装配作业车间
分批调度
遗传算法
仿真技术
assembly job shop
lot streaming scheduling
genetic algorithm
simulation technology