期刊文献+

一类四维多项式系统非双曲奇点的稳定性与分岔 被引量:1

Stability of Nonhyperbolic Singular Point and Bifurcation in a Class of Four Dimensional Polynomial Systems
下载PDF
导出
摘要 借助代数方法和Lyapunov函数,给出一类四维多项式中的三次微分方程的非双曲奇点的稳定性判据,研究具有球形中心的三次系统经过扰动后产生不变闭超曲面的分岔情况. By using the algebra technics and Lyapunov function,this paper gives the condition for stability of nonhyperbolic singular point in a class of four dimensional polynomial systems with degree three.We also investigate the invariant closed hyper surface bifurcation when the three degree system with ballcenter is perturbed.
作者 陈晓锋 CHEN Xiaofeng(Department of Foundational Education,Fuzhou University of International Studies and Trade,Fuzhou 350202,Fujian)
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2020年第5期642-646,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11801079)。
关键词 稳定性 非双曲奇点 分岔 stability nonhyperbolic singular point bifurcation
  • 相关文献

参考文献3

二级参考文献30

  • 1程荣福,蔡淑云.一个具功能性反应的微分生态系统的定性分析[J].东北师大学报(自然科学版),2005,37(1):11-15. 被引量:21
  • 2梁小花,张金顺.一个N维Hamilton系统的Painleve′分析与精确解[J].华侨大学学报(自然科学版),2007,28(3):327-329. 被引量:3
  • 3Hodgkin A,Huxley A. A quantitative description of membrane current and its application to conduction and excitation in nerve[J].The Journal of Physiology,1952.500-544.
  • 4Sugie J,Yamamoto M. On the existence of periodic solutions for the FitzHugh nerve system[J].Mathematica Japonica,1990,(04):759-767.
  • 5Troy W C. Oscillation phneomena in the Hodgkin-Huxley equations[J].Roy Soc Edin Proc,1976.299-310.
  • 6FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane[J].Biophysical Journal,1961.445-466.
  • 7Sugie J. Nonexistence of periodic solutions for the FitzHugh nerve system[J].Quarterly of Applied Mathematics,1991.543-554.
  • 8Kaumann E,Staude U. Uniqueness and nonexistence of limit cycles for the FitzHugh equation[A].New York:springer-verlag,1983.313-321.
  • 9Treskov S A,Volokitin E P. On existence of periodic solutions for the FitzHugh nerve system[J].Quarterly of Applied Mathematics,1996.601-607.
  • 10Geogescu A,Rocsoreanu C,Giurgiteau N. FitzHugh-Nagumo Model:Bifurcation and Dynamic[M].Dordrecht:Kluwer Academic Publisher,2000.

共引文献6

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部