期刊文献+

Finite Di erence Method for Riesz Space Fractional Advection-dispersion Equation with Fractional Robin Boundary Condition

下载PDF
导出
摘要 In this paper,a Riesz space fractional advection-dispersion equation with fractional Robin boundary condition is considered.By applying the fractional central di erence formula and the weighted and shifted Grunwald-Letnikov formula,we derive a weighted implicit nite difference scheme with accuracy O(△t^2+h^2).The solvability,stability,and convergence of the proposed numerical scheme are proved.A numerical example is presented to confirm the accuracy and efficiency of the scheme.
出处 《Chinese Quarterly Journal of Mathematics》 2020年第3期278-289,共12页 数学季刊(英文版)
基金 Supported by the Nation Natural Science Foundation of China(No.11271141) the Chongqing Science and Technology Commission(cstc2018jcyjAX0787)。
  • 相关文献

参考文献4

二级参考文献44

  • 1Sokolov, I. M., Klafter, J., and Blumen, A. Fractional kinetics. Physics Today, 55, 48-54 (2002).
  • 2Benson, D. A., Wheatcraft, S. W., and Meerschacrt, M. M. Application of a fractional advection- dispersion equation. Water Resources Research, 36, 1403-1412 (2000).
  • 3Benson, D. A., Wheatcraft, S. W., and Meerschaert, M. M. The fractional-order governing equation of L@vy motion. Water Resources Research, 36, 1413-1423 (2000).
  • 4Magin, R. L. Fractional Calculus in Bioengineering, Begell House Publishers, Danbury (2006).
  • 5Kirchner, J. W., Feng, X., and Neal, C. Fractal stream chemistry and its implications for contam- inant transport in catchments, nature, 403, 524-527 (2000).
  • 6Raberto, M., Scalas, E., and Mainardi, F. Waiting-times and returns in high-frequency financial data: an empirical study. Physica A: Statistical Mechanics and Its Applicatians, 314, 749-755 (2002).
  • 7Liu, F., Anh, V., and Turner, I. Numerical solution of the space fractionM Fokker-Planck equation. Journal of Computational and Applied Mathematics, 166, 209-219 (2004).
  • 8Ervin, V. J. and Roop, J. P. Variational formulation for the stationary fractional advection dis- persion equation. Numerical Methods for Partial Differential Equations, 22, 558-576 (2005).
  • 9Ervin, V. J., Heuer, N., and Roop, J. P. Numerical approximation of a time dependent, non-linear, space-fractional diffusion equation. SIAM Journal on Numerical Analysis, 45, 572-591 (2007).
  • 10Meerschaert M. M. and Tadjeran, C. Finite difference approximations for fractional advection- dispersion flow equations. Journal of Computational and Applied Mathematics, 172, 65-77 (2004).

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部