期刊文献+

JMNet: A joint matting network for automatic human matting 被引量:3

原文传递
导出
摘要 We propose a novel end-to-end deep learning framework, the Joint Matting Network(JMNet), to automatically generate alpha mattes for human images.We utilize the intrinsic structures of the human body as seen in images by introducing a pose estimation module,which can provide both global structural guidance and a local attention focus for the matting task. Our network model includes a pose network, a trimap network, a matting network, and a shared encoder to extract features for the above three networks. We also append a trimap refinement module and utilize gradient loss to provide a sharper alpha matte. Extensive experiments have shown that our method outperforms state-of-theart human matting techniques;the shared encoder leads to better performance and lower memory costs.Our model can process real images downloaded from the Internet for use in composition applications.
出处 《Computational Visual Media》 CSCD 2020年第2期215-224,共10页 计算可视媒体(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.61561146393 and61521002) supported by a Victoria Early-Career Research Excellence Award。
  • 相关文献

参考文献1

共引文献4

同被引文献4

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部