期刊文献+

基于机器学习的股票预测方法研究 被引量:2

Research on Stock Prediction Method Based on Machine Learning
下载PDF
导出
摘要 股票市场预测是金融界最热门、最有价值的研究领域之一,人们在早期仅使用结构化的数据即历史股票数据对股市进行预测。随着深度学习和自然语言处理技术的发展,研究者们开始探索金融新闻、社交软件上股民的评论等信息对股市价格的影响,从而使得预测的结果更好。从以上两种角度分别对各自使用的股市预测方法进行综述,最后对结果进行总结和展望。 Stock market forecasting is one of the most popular and valuable research areas in the financial world. In the early days, people used onlystructured data, historical stock data, to predict the stock market. With the development of deep learning and natural language processingtechnology, researchers have begun to explore the impact of financial news, social commentary on social software and other information onstock market prices, In order to making predictions better. The article summarizes the respective stock market forecasting methods usedfrom the above two perspectives, and finally summarizes and prospects the results.
作者 毛月月 张秋悦 MAO Yue-yue;ZHANG Qiu-yue(School of Big Data and Computer Science,Guizhou Normal University,Guiyang 550025;School of Mathematical Sciences,Guizhou Normal University,Guiyang 550025)
出处 《现代计算机》 2020年第23期44-47,共4页 Modern Computer
关键词 股票预测 历史数据 金融新闻 机器学习 Stock Prediction Historical Data Financial News Machine Learning
  • 相关文献

参考文献1

二级参考文献18

  • 1LUO L, CHEN X. Integrating piecewise linear representation and weighted support vector machine for stock trading signal prediction [J]. Applied Soft Computing, 2013, 13(2): 806 -816.
  • 2CHANG P-C, FAN C-Y, LIU C-H. Integrating a pieeewise linear representation method and a neural network model for stock trading points prediction [ J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2009, 39( 1): 80 - 92.
  • 3CHANG P-C, LIAO T W, LIN J-J, et al. A dynamic threshold de- cision system for stock trading signal detection [ J]. Applied Soft Computing, 2011, 11(5): 3998-4010.
  • 4ABU-MOSTAFA Y S, ATIYA A F. Introduction to financial forecas- ting [J]. Applied Intelligence, 1996, 6(3): 205-213.
  • 5KEOGH E, CHU S, HART D, et al. An online algorithm for seg- menting time series [ C]//ICDM 2001 : Proceedings of the 2001 In- ternational Conference on Data Mining. Piseataway: IEEE, 2001: 289 - 296.
  • 6KEOGH E, CHU S, HART D, et al. Segmenting time series: a survey and novel approach [ J]. Data Mining in Time Series Data- bases, 2004, 57:1-22.
  • 7WU H, SALZBERG B, ZHANG D. Online event-driven subsequenee matching over financial data streams [ C]// Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2004:23-34.
  • 8AGRAWAL R, FALOUTSOS C, SWAMI A. Efficient similarity search in sequence databases [ C]//FODO '93: Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms, LNCS 730. Berlin: Springer, 1993:69-84.
  • 9CHAN K-P, FU W-C. Efficient time series matching by wavelets [C]// ICDE 1999: Proceedings of the 15th International Confer- ence on Data Engineering. Washington, DC: IEEE Computer Soci- ety, 1999: 126-133.
  • 10ZHANG D, ZHOU L. Discovering golden nuggets: data mining in financial application [ J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2004, 34 (4): 513-522.

共引文献10

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部