摘要
股票市场预测是金融界最热门、最有价值的研究领域之一,人们在早期仅使用结构化的数据即历史股票数据对股市进行预测。随着深度学习和自然语言处理技术的发展,研究者们开始探索金融新闻、社交软件上股民的评论等信息对股市价格的影响,从而使得预测的结果更好。从以上两种角度分别对各自使用的股市预测方法进行综述,最后对结果进行总结和展望。
Stock market forecasting is one of the most popular and valuable research areas in the financial world. In the early days, people used onlystructured data, historical stock data, to predict the stock market. With the development of deep learning and natural language processingtechnology, researchers have begun to explore the impact of financial news, social commentary on social software and other information onstock market prices, In order to making predictions better. The article summarizes the respective stock market forecasting methods usedfrom the above two perspectives, and finally summarizes and prospects the results.
作者
毛月月
张秋悦
MAO Yue-yue;ZHANG Qiu-yue(School of Big Data and Computer Science,Guizhou Normal University,Guiyang 550025;School of Mathematical Sciences,Guizhou Normal University,Guiyang 550025)
出处
《现代计算机》
2020年第23期44-47,共4页
Modern Computer
关键词
股票预测
历史数据
金融新闻
机器学习
Stock Prediction
Historical Data
Financial News
Machine Learning