摘要
采用标准力值传感器、丝杆升降机及挂架结构取代砝码下挂方式,构成拉力计自动检定系统。采用步进电机驱动螺旋升降机丝杆解决了加载机构自动力值加载问题。系统自动采集标准传感器输出力值数据。采用摄像设备实时拍摄拉力计游标移动位置图片,上传到计算机,采用Hopfield神经网络智能识别软件进行识别处理,获得游标位移的数字信息,转化为测力计读数信息,由此构成拉力计自动检定系统,从而提高检定自动化水平和工作效率。
The standard force value sensor,screw lift and pylon structure were used to replace the weight hanging method to form the tension meter automatic verification system. The stepping motor was used to drive the screw lift screw to solve the automatic force loading problem of the loading mechanism. The system automatically collected the standard sensor output force value data. The camera device was used to capture the moving position picture of the dynamometer cursor in real time and uploaded it to the computer. The digital information of the vernier displacement was obtained and converted into the dynamometer reading information by using Hopfield neural network intelligent recognition software for identification processing. The level of verification automation and work efficiency were improved by this dynamometer automatic verification system.
作者
王毅
徐炜东
WANG Yi;XU Wei-dong(Kunming Shipping Equipment Research and Test Center,Kunming 650051,China)
出处
《宇航计测技术》
CSCD
2020年第4期83-87,共5页
Journal of Astronautic Metrology and Measurement
关键词
图像识别
拉力计
自动检定
数据处理
神经网络
Image identification
Tention meter
Automatic verification
Data processing
Neural network