摘要
文章研究具有有界峰值扰动和时变时滞的线性中立型系统的可达集估计问题.通过构造李雅普诺夫泛函,结合时滞分解技术、倒凸法和自由权矩阵法,推导线性中立型系统可达集的椭圆形边界的一些条件.该文的主要特点在于构造含有三重积分的李雅普诺夫泛函,得到线性中立型系统更精确的可达集边界.给出一些数值算例,说明该方法的有效性.
This paper investigates the problem of reachable sets estimation for linear neutral systems with bounded peak disturbances and time-varying delays.Together with the new Lyapunov-Krasovskii functionals,delay decomposition technique,reciprocally convex method and free-weighting matrix approach,some further sufficient conditions are derived to find an ellipsoid to bound the reachable sets of linear neutral systems with bounded peak disturbances and time-varying delays.The main advantage of this paper is that the triple integral functionals are constructed to derive tighter bound of reachable sets for linear neutral systems.Some numerical examples are given to indicate the effectiveness of the proposed method.
作者
陈昊
梅学婷
康卫
CHEN Hao;MEI Xueting;KANG Wei(School of Mathematical Sciences,Huaibei Normal University,235000,Huaibei,Anhui,China;School of Information Engineering,Fuyang Normal University,236041,Fuyang,Anhui,China)
出处
《淮北师范大学学报(自然科学版)》
CAS
2020年第3期1-8,共8页
Journal of Huaibei Normal University:Natural Sciences
基金
安徽省高校自然科学研究重点项目(KJ2019A0589)
安徽省自然科学研究项目(1908085MF186)
淮北师范大学重点教研项目(JY18020)
淮北师范大学一般教研项目(JY18037)。
关键词
李雅普诺夫泛函
可达集
线性中立型系统
线性矩阵不等式
倒凸方法
Lyapunov-Krasovskii functional
reachable set
linear neutral systems
linear matrix inequality(LMI)
reciprocally convex method