期刊文献+

基于改进YOLOv3的变压器定位检测研究 被引量:2

Transformer Detection Based on Improved YOLOv3
下载PDF
导出
摘要 目前目标检测算法由于数量和背景不平衡导致的电力部件检测精度不高,同时在背景复杂的情况下分类定位不准确。针对上述问题,提出一种改进的YOLOv3的变压器检测算法,使用DarkNet-53深度卷积神经网络作为抽取图像特征的骨干网络。使用Focal loss和均衡交叉熵函数改进原YOLOv3的损失函数,使模型在样本数量少的类别上倾注更多的注意力;使用K-means对样本中的变压器框进行聚类生成预选框,并调整YOLOv3输出结构使其适应变压器目标检测任务,提高检测的效率。实验结果表明改进后的YOLOv3在变压器检测上有更高的准确率和速率。 At present,the detection accuracy of power components due to the imbalance of the number and background of the target detection algorithm is not high,and the classification and positioning are not accurate in the case of complex background.In view of the above problems,an improved YOLOv3 transformer detection algorithm is proposed,using DarkNet-53 deep convolutional neural network as the backbone network to extract image features.Focal loss and balanced cross-entropy function is used to improve the original YOLOv3 loss function,so that the model can pay more attention to the category with a small number of samples;K-means is used to cluster the transformer boxes in the samples and generate pre-selection boxes,and the output structure of YOLOv3 is adjusted to make it suitable for the target detection task of transformers and improve the detection efficiency.The experimental results show that the improved YOLOv3 has higher accuracy and rate in transformer detection.
作者 姚万业 冯涛明 YAO Wanye;FENG Taoming(School of Computer and Control Engineering,North China Electric Power University,Baoding 071003,China)
出处 《电力科学与工程》 2020年第8期51-56,共6页 Electric Power Science and Engineering
关键词 变压器检测 深度学习 YOLOv3 Focal loss transformer detection deep learning YOLOv3 Focal loss
  • 相关文献

参考文献7

二级参考文献135

  • 1孙凤杰,崔维新,张晋保,张旭东,肖学东.远程数字视频监控与图像识别技术在电力系统中的应用[J].电网技术,2005,29(5):81-84. 被引量:71
  • 2Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 3Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 4Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 5Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 6Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].
  • 7Xing DK,Dai WY,Xue GR,Yu Y.Bridged refinement for transfer learning.In:Proc.of the Ilth European Conf.on Practice of Knowledge Discovery in Databases.Berlin:Springer-Verlag,2007.324-335.[doi:10.1007/978-3-540-74976-9_31].
  • 8Mahmud MMH.On universal transfer learning.In:Proc.of the 18th Int’l Conf.on Algorithmic Learning Theory.Sendai,2007.135-149.[doi:10,1007/978-3-540-75225-7_14].
  • 9Samarth S,Sylvian R.Cross domain knowledge transfer using structured representations.In:Proc.of the 21st Conf.on Artificial Intelligence.AAAI Press,2006.506-511.
  • 10Bel N,Koster CHA,Villegas M.Cross-Lingual text categorization.In:Proc.of the European Conf.on Digital Libraries.Berlin:Springer-Verlag,2003.126-139.[doi:10.1007/978-3-540-45175-4_13].

共引文献741

同被引文献23

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部