摘要
目前复杂曲线的插补主要有两种方式,通过B样条基函数参数的等距变化或对速度和加速度控制产生弦线逼近进行拟合,但这两种方式拟合精度不高.为了提高拟合精度,综合考虑了样条曲线局部特性,构建了误差增广目标函数,并采用粒子群算法对均匀三次B样条曲线插补轨迹寻求最优解.结果表明,算法可迅速收敛求出最优轨迹,且有效规避了局部最优带来的问题.
At present,there are two main ways of interpolating complex curves,which are fitted by the equidistant variation of the B-spline basis function parameters or the string approximation for velocity and acceleration control,but the fitting accuracy is not high.In order to improve the fitting precision,the local characteristics of the spline curve are considered comprehensively,and the error augmentation objective function is constructed.The particle swarm optimization algorithm is used to find the optimal solution for the uniform cubic B-spline curve interpolation trajectory.The results show that the algorithm can quickly converge to find the optimal trajectory,and effectively avoid the problems caused by local optimization.
作者
游达章
徐笑涵
刘攀
康亚伟
YOU Dazhang;XU Xiaohan;LIU Pan;KANG Yawei(School of Mechanical Engineering,Hubei University of Technology,Wuhan 430068,CHN;Hubei Key Lab of Manufacture Quality Engineering,Wuhan 430068,CHN)
出处
《制造技术与机床》
北大核心
2020年第9期128-131,共4页
Manufacturing Technology & Machine Tool
基金
国家自然科学基金“基于时序溯源的嵌入式数控系统软件可靠性评估方法研究”(51875180)。
关键词
粒子群算法
B样条曲线
曲线插补
particle swarm algorithm
B-spline curve
curve interpolation