期刊文献+

A Study of the Truncated Square Pyramid Geometry for Enhancement of Super-hydrophobicity

原文传递
导出
摘要 Super-hydrophobic surfaces are quite common in nature,inspiring people to continually explore its water-repellence property and applications to our lives.It has been generally agreed that the property of super-hydrophobicity is mainly contributed by the microscale or nanoscale(or even smaller)architecture on the surface.Besides,there is an energy barrier between the Cassie-Baxter wetting state and the Wenzel wetting state.An optimized square post micro structure with truncated square pyramid geometry is introduced in this work to increase the energy barrier,enhancing the robustness of super-hydrophobicity.Theoretical analysis is conducted based on the wetting transition energy curves.Numerical simulation based on a phase-field lattice Boltzmann method is carried out to verify the theoretical analysis.The numerical simulation agrees well with the theoretical analysis,showing the positive significance of the proposed micro structure.Furthermore,another novel micro structure of rough surface is presented,which combines the advantages of truncated pyramid geometry and noncommunicating roughness elements.Theoretical analysis shows that the novel micro structure of rough surface can effectively hinder the Cassie-Baxter state to Wenzel state transition,furthefly enhancing the robustness of the surface hydrophobicity.
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2020年第4期843-850,共8页 仿生工程学报(英文版)
基金 European Union project H2020-MSCA-RISE 778104.
  • 相关文献

参考文献2

二级参考文献8

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部