期刊文献+

基于积极集识别技术的半无限minimax问题非单调有限记忆SQP算法

A NON-MONOTONE SQP ALGORITHM WITH L-BFGS UPDATE FOR SOLVING SEMI-INFINITE MINIMAX PROBLEM BASED ON ACTIVE SET TECHNIQUE
下载PDF
导出
摘要 本文研究了半无限minimax问题.利用积极集识别技术结合非单调有限记忆序列二次规划(SQP)方法来求解半无限minimax问题.在适当的条件下证明了算法的收敛性.数值结果表明新算法在降低求解规模和迭代次数等方面均优于采用Armijo型线搜索的SQP方法. This paper studies the semi-infinite minimax problem.By using active set recognition technology combined with non-monotonic finite memory sequential quadratic programming(SQP) method to solve the semi-infinite minimax problem.The convergence of the algorithm is proved under appropriate conditions.Numerical results show that the new algorithm is superior to the SQP method using Armijo-type line search in terms of reducing the solution scale and the number of iterations.
作者 杨永亮 王福胜 甄娜 YANG Yong-liang;WANG Fu-sheng;ZHEN Na(Department of Mathematics,Taiyuan Normal University,Jinzhong 030619,China)
出处 《数学杂志》 2020年第5期577-584,共8页 Journal of Mathematics
基金 山西省回国留学人员科研项目(2017–104) 太原师范学院研究生创新项目(SYYJSJC–1911).
关键词 极大极小问题 积极集 离散化方法 SQP算法 非单调技术 minimax problem constraint active set discretization method SQP algorithm non-monotone technique
  • 相关文献

参考文献4

二级参考文献30

  • 1周广路,Generalized pseudo-directional derivatives and its application,1996年
  • 2Qi L,Math Program,1994年,66卷,25页
  • 3Wang Changyu,Syst Sci Math Sci,1994年,3期,261页
  • 4Auslender A, Goberna M A, Ldpez M A. Penalty and smoothing methods for convex semi-infinite programming. Math Oper Res, 2009, 34:303-319.
  • 5Bandler J W, Liu P C, Tromp H. A nonlinear programming approach to optimM design centering, tolerancing, and tunning. IEEE Trans Circuits Syst, 1976, 23:155-165.
  • 6Bertsekas D P. Constrained Optimization and Lagrange Multiplier Methods. New York: Academic Press, 1982.
  • 7Chen T, Fan M K H. On convex formulation of the floor-plan area minimization problem. In: Proceedings of the International Symposium on Physical Design. Monterey, CA: Academic Press, 1998, 124-128.
  • 8Elzinga J, Moore T G. A central cutting plane algorithm for the convex programming problem. Math Program, 1975, 8:134-145.
  • 9Fang S C, Han J Y, Huang Z H, et al. On the finite termination of an entropy function based smoothing Newton method for vertical linear complementarity problems. J Global Optim, 2005, 33:369-391.
  • 10Fang S C, Wu S Y. Solving rain-max problems and linear semi-infinite programs. Comput Math Appl, 1996, 32:87-93.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部