期刊文献+

基于深度学习的Android恶意软件检测:成果与挑战 被引量:8

Android Malware Detection Based on Deep Learning:Achievements and Challenges
下载PDF
导出
摘要 随着Android应用的广泛使用,Android恶意软件数量迅速增长,对用户的财产、隐私等造成的安全威胁越来越严重。近年来基于深度学习的Android恶意软件检测成为了当前安全领域的研究热点。该文分别从数据采集、应用特征、网络结构、效果检测4个方面,对该研究方向已有的学术成果进行了分析与总结,讨论了它们的局限性与所面临的挑战,并就该方向未来的研究重点进行了展望。 With the prosperous of Android applications,Android malware has been scattered everywhere,which raises the serious security risk to users.On the other hand,the rapid developing of deep learning fires the combat between the two sides of malware detection.Inducing deep learning technologies into Android malware detection becomes the hottest topic of society.This paper summarizes the existing achievements of malware detection from four aspects:Data collection,feature construction,network structure and detection performance.Finally,the current limitations and facing challenges followed by the future researches are discussed.
作者 陈怡 唐迪 邹维 CHEN Yi;TANG Di;ZOU Wei(Institute of Information Engineering,Chinese Academy of Sciences,Beijing 100093,China;Chinese University of Hong Kong,Hongkong 999077,China;Key Laboratory of Network Assessment Technology,Chinese Academy of Sciences,Beijing 100093,China;School of Cyber Security,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2020年第9期2082-2094,共13页 Journal of Electronics & Information Technology
基金 中国科学院重点实验室基金(CXJJ-19S022)。
关键词 移动安全 Android恶意软件 ANDROID应用 深度学习 机器学习 Mobile security Android malware Android application Deep learning Machine learning
  • 相关文献

参考文献4

二级参考文献48

  • 1Gartner, Gartner says Android has surpassed a billion shipments of devices, http://www.gartner.com/ newsroongid/2954317, 2015.
  • 2T. Vidas, D. Votipka, and N. Christin, All your droid are belong to us: A survey of current Android attacks, inProceedings of the 5th USENIX Workshop on Offensive Technologies (WOOT), 2011, pp. 81-90.
  • 3A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, A survey of mobile malware in the wild, in Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM), 2011, pp. 3-14.
  • 4McAfee, McAfee labs threats report, http://www. mcafee.con-dus/resources/reports/rp-quarterly-threat-q4- 2013.pdf, 2015.
  • 5A. Mylonas, A. Kastania, and D. Gritzalis, Delegate the smartphone user? Security awareness in smartphone platforms, Computers & Security, vol. 34, pp. 47-66, 2013.
  • 6Z. Fang, W. Han, and Y. Li, Permission based Android security: Issues and countermeasures, Computers & Security, vol. 43, pp. 205-218, 2014.
  • 7J. Xu, Y.-T. Yu, Z. Chert, B. Cao, W. Dong, Y. Guo, and J. Cao, Mobsafe: Cloud computing based forensic analysis for massive mobile applications using data mining, Tsinghua Science and Technology, vol. 18, no. 4, pp. 418--427, 2013.
  • 8R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, Whyper: Towards automating risk assessment of mobile applications, in Proceedings of the 22nd USENIX Security Symposium (USENIX Security), 2013, pp. 527-542.
  • 9Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, Autocog: Measuring the description-to-permission fidelity in Android applications, in Proceedings of the 21st ACM Conference on Computer and Communications Security (CCS), 2014, pp. 1354-1365.
  • 10D. Geneiatakis, I. N. Fovino, I. Kounelis, and P. Stirparo, A permission verification approach for Android mobile applications, Computers & Security, vol. 49, pp. 192-205, 2015.

共引文献81

同被引文献52

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部