期刊文献+

(1+1)维经典Boussinesq-Burgers系统的相容Riccati展开可解性和精确解 被引量:2

Consistent Riccati expansion solvability and exact solutions of the(1+1)-dimensional classical Boussinesq-Burgers system
下载PDF
导出
摘要 研究了(1+1)维经典Boussinesq-Burgers(CBB)系统的相容Riccati展开(CRE)可解性和相互作用解.首先,运用相容Riccati展开法,证明了该方程组是相容Riccati展开可解的;其次通过求解相容性方程,给出了该方程组的单孤子解,并且借助雅可比椭圆函数构造了孤立波与椭圆周期波的相互作用解. In this paper,the(1+1)-dimensional classical Boussinesq-Burgers system is proved to be consistent Riccati expansion(CRE)solvable by consistent Riccati expansion method.At the same time,with the help of Riccati equation and the Jacobi elliptic functions,we can obtain soliton solutions and soliton-cnoidal wave interaction solution of this system.
作者 呼星汝 Hu Xingru(School of Mathematics,Northwest University,Xi'an 710127,China)
出处 《纯粹数学与应用数学》 2020年第3期302-311,共10页 Pure and Applied Mathematics
基金 国家自然科学基金(11775047).
关键词 (1+1)维经典Boussinesq-Burgers系统 相容Riccati展开 孤子解 相互作用解 (1+1)-dimensional classical Boussinesq-Burgers system consistent Riccati expansion soliton solution interaction solution
  • 相关文献

参考文献2

二级参考文献18

  • 1楼森岳,连增菊.Searching for Infinitely Many Symmetries and Exact Solutions via Repeated Similarity Reductions[J].Chinese Physics Letters,2005,22(1):1-4. 被引量:5
  • 2E. Date, Prog. Theor. Phys. 59 (1978) 265.
  • 3X.G. Geng, J. Math. Phys. 40 (1999) 2971.
  • 4Y. Li, W.X. Ma, and J.E. Zhang. Phys. Lett. A 275 (2000) 60.
  • 5M.J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981).
  • 6S.P, Novikov, S.V. Manakov, L.P. Pitaevskii, and V.E. Zakharov, Theory of Solitons, the Inverse Scattering Methods, Consultants Bureau, New York (1984).
  • 7M. Wadati, K. Konno, and Y.H. Ichikawa, J. Phys. Soc. Jpn. 46 (1979) 1965.
  • 8C.H. Gu, H.S. Hu, and Z.X. Zhou, Darboux Transformation in Soliton Theory and Its Geometric Applications, Shanghai Scientific and Technical Publishers, Shanghai (1999).
  • 9V.B. Matveev and M.A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin (1991).
  • 10G. Neugebauer and D. Kramer, J. Phys. A 16 (1983) 1927.

共引文献5

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部