期刊文献+

奇异值与特征值扰动界估计

The Perturbation Bounds for Singular Values and Eigenvalues
下载PDF
导出
摘要 基于非奇异矩阵与可对角化矩阵,主要依据矩阵奇异值分解理论及可对角化矩阵的特点,给出矩阵加法扰动下奇异值相对扰动结果和乘法扰动下特征值扰动上界.最后通过比较,说明本文得出特征值扰动结果更优,并推广了已有结果. Based on the theory of singular value decomposition of matrix and the characteristics of diagonalizable matrix.We give the perturbation bound for singular values of matrices under additive perturbations and the perturbation bound of eigenvalues under multiplicative perturbations.Finally,the comparison shows that the perturbation bound of eigenvalue in this paper is better,which generalizes the existing conclusion.
作者 燕岩军 宋儒瑛 杨帆 YAN Yanjun;SONG Ruying;YANG Fan(Department of Public Course Teaching,Shanxi Institute of Mechanical&Electrical Engineering,Changzhi 046011,China;Department of Mathematics,Taiyuan Normal University,Taiyuan 030619,China;School of Science,Jiamusi University,Jiamusi 154002,China)
出处 《湖北民族大学学报(自然科学版)》 CAS 2020年第3期309-312,共4页 Journal of Hubei Minzu University:Natural Science Edition
关键词 非奇异 可对角化 奇异值 特征值 扰动界 nonsingular diagonalizable singular value eigenvalue perturbation bound
  • 相关文献

参考文献3

二级参考文献17

  • 1Z. Man, A. P. Paplinski, H. R. Wu. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators [J]. IEEE Transactions on Automatic Control, 1994, 39(12): 2464- 2469.
  • 2Feng, X. Yu, Z. Man. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12): 2159 - 2167.
  • 3X. Yu, Z. Man. Fast terminal sliding-mode control design for nonlinear dynamical systems [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(2): 261 -264.
  • 4H. Li, L. Dou, Z. Su. Adaptive nonsingular fast terminal sliding mode control for electromechanical actuator [J]. International Journal of Systems Science, 2013, 44(3): 401- 415.
  • 5M. Alanelli,A. Hadjidimos.On iterative criteria for H - and non- H -matrices[J]. Applied Mathematics and Computation . 2006 (1)
  • 6Toshiyuki Kohno,Hiroshi Niki,Hideo Sawami,Yi-ming Gao.An iterative test for H -matrix[J]. Journal of Computational and Applied Mathematics . 1999 (1)
  • 7Li Bishan.An iterative criterion for H-Matrices[J]. Linear Algebra and Its Applications . 1998 (1)
  • 8Yuxiang Sun.An improvement on a theorem by Ostrowski and its applications. Northeastern Mathematical Journal . 1991
  • 9Berman A,Plemmons RJ.Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics . 1994
  • 10孙玉祥.广义对角占优矩阵的充分条件[J].高等学校计算数学学报,1997,19(3):216-223. 被引量:124

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部