摘要
基于非奇异矩阵与可对角化矩阵,主要依据矩阵奇异值分解理论及可对角化矩阵的特点,给出矩阵加法扰动下奇异值相对扰动结果和乘法扰动下特征值扰动上界.最后通过比较,说明本文得出特征值扰动结果更优,并推广了已有结果.
Based on the theory of singular value decomposition of matrix and the characteristics of diagonalizable matrix.We give the perturbation bound for singular values of matrices under additive perturbations and the perturbation bound of eigenvalues under multiplicative perturbations.Finally,the comparison shows that the perturbation bound of eigenvalue in this paper is better,which generalizes the existing conclusion.
作者
燕岩军
宋儒瑛
杨帆
YAN Yanjun;SONG Ruying;YANG Fan(Department of Public Course Teaching,Shanxi Institute of Mechanical&Electrical Engineering,Changzhi 046011,China;Department of Mathematics,Taiyuan Normal University,Taiyuan 030619,China;School of Science,Jiamusi University,Jiamusi 154002,China)
出处
《湖北民族大学学报(自然科学版)》
CAS
2020年第3期309-312,共4页
Journal of Hubei Minzu University:Natural Science Edition
关键词
非奇异
可对角化
奇异值
特征值
扰动界
nonsingular
diagonalizable
singular value
eigenvalue
perturbation bound