期刊文献+

Implanting a preferential solid electrolyte interphase layer over anode electrode of lithium ion batteries for highly enhanced Li^+ diffusion properties 被引量:1

下载PDF
导出
摘要 The lithium-ion batteries are recognized as the most promising energy storage system,but it still does not meet the power requirements of electric vehicle batteries owing to low volumetric energy density with the traditional graphite electrode system.In this study,we report the development of a novel electrode system fabricated by implantation of a solid electrolyte interphase(SEI)layer on the graphite surface.The SEI-implanted graphite electrode is made using a lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)-based electrolyte and cycled with a lithium tetrafluoroborate LiBF4-based electrolyte.This new electrode system shows significantly enhanced electrochemical properties owing to the rapid and efficient diffusion of Li ions through the SEI layer between the electrolyte and electrode.This graphite electrode with its pre-formed SEI layer achieves a reversible capacity of 357 mAh g^-1 at 0.5 C after 50 cycles,which is significantly higher than that of commercial lithium-ion battery systems constructed with LiPF6(312mAh g^-1).The resulting unique electrode system could present a new avenue in SEI research for highperformance lithium-ion batteries.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期285-292,I0009,共9页 能源化学(英文版)
基金 supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2019R1A2C2088174)。
  • 相关文献

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部