期刊文献+

具有Wentzel型边界条件的反源问题解的唯一性 被引量:1

Uniqueness of the Solution to the Inverse Source Problem with a Wentzel Boundary Condition
下载PDF
导出
摘要 研究了有界区域内变系数热传导方程的反源问题.与其他模型不同,此模型中的边界条件是Wentzel型边界条件.在关于空间变量积分的附加条件下进行反演,此类附加条件有利于避免单点观测数据下随机性高、误差大的问题.首先,应用变分理论的方法,研究了方程解的正则性;其次,应用H lder不等式、Young不等式以及Friedrichs不等式,证明了仅与时间相关的源项系数的唯一性.结果表明给定的附加条件是充分的,能够反演出未知的源项系数. In this paper,the inverse source problem of the variable coefficient heat conduction equation in the bounded area is studied.Unlike other models,the boundary conditions in this model are Wentzel type boundary conditions.Inversion is performed under additional conditions regarding the integration of spatial variables,which are beneficial to avoid the problems of high randomness and large errors under single-point observation data.First,the regularity of the solution of the equation is studied by using the method of variational theory;Secondly,the uniqueness of the time-dependent source term coefficients is proved by using Holder inequality,Young inequality,and Friedrichs inequality.The results show that the given additional conditions are sufficient to reverse the unknown source term coefficients.
作者 尹丽君 温鑫亮 YIN Li-jun;WEN Xin-liang(School of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《兰州交通大学学报》 CAS 2020年第4期132-137,共6页 Journal of Lanzhou Jiaotong University
基金 国家自然科学基金(11461039,61663018,11961042) 甘肃省自然科学基金(18JR3RA122) 兰州交通大学“百名青年优秀人才培养计划”。
关键词 反源问题 Wentzel型边界条件 变分理论 正则性 唯一性 inverse source problem Wentzel boundary condition variational theory regularity uniqueness
  • 相关文献

参考文献2

二级参考文献15

  • 1Han T Y.Three-dimensional navier-stokes simulation for pas- senger compartment cooling[ J]. International Journal of Ve- hicle Design, 1989,10 (2) : 175 - 186.
  • 2Drescher H P, Deuster M. Innovative two-dimensional gas temperature measurement using acoustic pyrometry[ C]//8th International Symposium on Temperature and Thermal Meas- urements in Industry and Science. 2001 : 1077 - 1082.
  • 3Ames W F. Numerical Methods for Partial Differential Equa- tions [ M ]. New York : Academic Press, 2014.
  • 4Azmi W H, Sharma K V, Sarma P K, et al. Numerical valida- tion of experimental heat transfer coefficient with SiO2 nanofluid flowing in a tube with twisted tape inserts [ J ]. Ap- plied Thermal Engineering,2014,73 (1) :296 -306.
  • 5Dai W, Nassar R. A second-order ADI scheme for three-di- mensional parabolic differential equations [ J ]. Numerical Methods for Partial Differential Equations, 1998,14 (2).
  • 6Zimparov V. Prediction of friction factors and heat transfer coefficients for turbulent flow in corrugated tubes combined with twisted tape inserts ( Part 2 ) : heat transfer coefficients [ J ]. International Journal of Heat and Mass Transfer,2004, 47(2) :385 -393.
  • 7Jiang W, Shen L F, Chen D, et al. An extended FDTD meth- od with inclusion of material dispersion for the full-vectorial analysis of photonic crystal fibers [ J ]. Journal of Lightwave Technology,2006,24 ( 11 ) :4417 - 4423.
  • 8Shajari P S, Ivaz K. Nine point muhistep methods for linear transport equation [ J ]. Journal of Concrete and Applicable Mathematics,2013,11 (2) :183 - 189.
  • 9丁能根,洪四华,葛尧,刘峰.空调车室内瞬态温度场的数值模拟[J].北京汽车,2008(2):8-10. 被引量:2
  • 10胡敏,黄旭伟.电子封装结构电源单元的热流耦合模拟及其优化设计[J].世界科技研究与发展,2016,38(3):613-618. 被引量:1

共引文献4

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部