期刊文献+

含左右分数导数的时滞微分方程解的存在性和唯一性

Existence and uniqueness of solutions for delay differential equations with left and right fractional derivatives
下载PDF
导出
摘要 研究了一类含左右Caputo分数导数的时滞微分方程Riemann-Stieltjes积分边值问题。通过构建单调迭代序列并利用上下解方法得到了边值问题解的存在性与唯一性定理。最后给出实例以说明本文的主要结论的适用性。 A class of Riemann-Stieltjes integral boundary value problems for delay differential equations with Caputo left and right fractional derivatives was studied.The existence and uniqueness of solutions for the boundary value problems were obtained by constructing the monotone iterative sequences and using the method of upper and lower solutions.Finally,an example was given to illustrate the main conclusions.
作者 黄雪楠 刘锡平 HUANG Xuenan;LIU Xiping(College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《上海理工大学学报》 CAS CSCD 北大核心 2020年第4期311-316,共6页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11171220)。
关键词 分数阶微分方程 分数阶左右导数 RIEMANN-STIELTJES积分 时滞 CAPUTO导数 上下解 fractional differential equation fractional left and right derivative Riemann-Stieltjes integral time delay Caputo derivative upper and lower solutions
  • 相关文献

参考文献7

二级参考文献51

  • 1黄先开,向子贵.具有时滞的Duffing型方程+g(x(t—τ))=p(t)的2π周期解[J].科学通报,1994,39(3):201-203. 被引量:90
  • 2李芳菲,贾梅,李春岭,李高尚.二阶两点边值问题3个解的存在性[J].上海理工大学学报,2006,28(6):553-557. 被引量:1
  • 3Norkin S B, Second order differential equations with retarded argument[M]. Moscow: Nauta, 1965(in Russian).
  • 4Wang X J, and Song G H. Oscillation Criteria for a second-order nonlinear damped differential equation[J]. International Journal of Information and Systems Sciences, 2011, 7(1): 73-82.
  • 5Rogcvchenko Y V, and Tuncay F. Oscillation theorems for a class of second order nonliar differ- ential equations with damping[J]. Taiwan Residents J Math, 2009, 13(6B): 1909-1928.
  • 6Wintner A. A criterion of oscillatory stability[J]. Quart Appl Math, 1949, 7: 115-117.
  • 7Hartman P. On nonoscillatory linear differential equations of second order[J]. Amer J Math, 1952, 74(2): 389-400.
  • 8Rogovchenko Y V, Tuncay F. Oscillation criteria for second-order nonlinear differential equations with damping[J]. Nonlinear Analysis, 2008, 69 (1.1): 208-221.
  • 9CH G. Philos. Oscillation theorems for linear differential equations of second order[J]. Arch Math (Basel), 1989, 53(5): 482-492.
  • 10Wang Q R. Oscillation Criteria for Nonlinear Second Order Damped Differential Equations[J]. Acta Math Hungar, 2004, 102(1-2): 117-139.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部