期刊文献+

面向云数据中心资源均衡分配需求的聚类调度算法研究 被引量:4

Clustering scheduling algorithm for resource allocation requirements of cloud data centers
下载PDF
导出
摘要 针对云数据中心资源利用率较低、能源消耗较高的问题,提出了基于资源需求差异的资源均衡调度策略。在包簇框架模型基础上,利用与资源需求相关的距离度量因子,将资源需求差异大的包通过改进的k-means算法进行聚类;利用资源之间的相关性作为包与簇之间的距离,在资源分配的过程中使包能够集中映射到簇中,从而减少簇的使用个数。实验结果表明,在包簇框架的概念下,基于资源需求差异的改进后的k-means聚类算法能够优化包聚类步骤,资源调度算法能够提高云数据中心各类资源利用率、降低资源分配过程中产生的能耗,具有有效性和可扩展性。 Aiming at the problem of low resource utilization and high energy consumption in cloud data center,a resource balancing scheduling strategy based on the resource demand difference was proposed.Based on a package-cluster framework model,the packages with large differences in resource requirements were clustered an improved k-means algorithm using the distance metrics related to resource requirements.The resources were used as the distance between packages and clusters.In the process of resource allocation,the package was mapped into clusters in a centralized manner,thereby the number of clusters used could be reduced.The experimental results show that under the concept of package-cluster framework,the improved k-means clustering algorithm based on the difference of resource requirements can optimize the packet clustering step.The resource scheduling algorithm presented can improve the utilization of various resources and reduce the energy consumption in the cloud data center.The algorithm is of effectiveness and scalability.
作者 徐雨婷 陈世平 XU Yuting;CHEN Shiping(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《上海理工大学学报》 CAS CSCD 北大核心 2020年第4期404-410,共7页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(61472256,61170277) 上海市一流学科建设项目(S1201YLXK)。
关键词 数据中心 包簇框架 K-MEANS算法 资源分配 data center package-cluster framework k-means algorithm resource allocation
  • 相关文献

参考文献8

二级参考文献59

  • 1陈真勇,唐龙,唐泽圣,熊璋.以鲁棒性为目标的数字多水印研究[J].计算机学报,2006,29(11):2037-2043. 被引量:35
  • 2M. Armbrust, A. Fox, R. Griffith, et. al. Above the Clouds A Berkeley View of Cloud Computing. Technical Report No. UCB/EECS-2009-28, University of Cali- fornia at Berkley, USA, Feb. 10, 2009. [OL] http://www.eecs.berkeley.edu/Pubs/TechRpts/2OO9/EECS -2009-28.pdf.
  • 3Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, et. al. CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Re- source Provisioning Algorithms, Sottware: Practice and Experience (SPE), [J]Volume 41, Number 1, Pages: 23-50, ISSN: 0038-0644, Wiley Press, New York, USA, January, 2011.
  • 4Ghosh, T.K. ,Goswami, R. ; Bera, S. ,Barman, S.. Load balanced static grid scheduling using Max-Min heuristic. [j] 2rid IEEE International Conference on Parallel Distri- buted and Grid Computing (PDGC2012), pp. 419-423,2012.
  • 5BUYYA R, YEO C S, VENUGOPAL S. Market oriented cloud com?puting: vision, hype, and reality for delivering IT services as comput?ing utilities[A]. HPCC'08[C]. Dalian, China, 2008. 5-13.
  • 6BELOGLAZOY A, BUYYA R, LEE C Y, et al. A taxonomy and sur?vey of energy-efficient data centers and cloud computing systems[J]. Advancesin Computers, 20 II ,(82):47-111.
  • 7GARG S K, YEO C S, ANANDSIVAM A, et al. Environment- con?scious scheduling of HPC applications on distributed cloud-oriented data centers[J].Journal of Parallel and Distributed Computing, 2011,71(6): 732-749.
  • 8BICHLER M, SETZER T, SPEITKAMP B. Capacity planning for virtualized servers[A]. WITS'06[C]. Milwaukee, Wisconsin, USA, 2006. 1-6.
  • 9KHANNA G, BEATY K, KAR G, et al. Application performance management in virtualized server environments[A]. NOMS 2006[C]. Vancouver, BC, 2006. 373-381.
  • 10VERMA A, AHUJA P, NEOGI A. pMapper: power and migration cost aware application placement in virtualized systems[A]. Middleware '08[C]. New York, NY, USA: Springer-Verlag, 2008. 243-264.

共引文献80

同被引文献44

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部