摘要
定义q-3-李代数的权为λ的Rota-Baxter算子,给出P为q-3-李代数权为λ的Rota-Baxter算子的充要条件,并通过Rota-Baxter李代数、Rota-Baxter结合代数、Rota-Baxter左对称代数和Rota-Baxter群代数等实现了Rota-Baxter q-3-李代数.
The author defined the Rota-Baxter operator whose weight wasλfor q-3-Lie algebras,and gave the necessary and sufficient condition for P to be Rota-Raxter operator with weight λ of q-3-Lie algebras.They could be derived from Rota-Baxter Lie-algebras,Rota-Baxter q-Lie algebras,Rota-Baxter pre-Lie algebras and Rota-Baxter group algebras.
作者
林丽鑫
LIN Lixin(School of Mathematics Science,Mudanjiang Normal University,Mudanjiang 157011,Heilongjiang Province,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2020年第5期1066-1072,共7页
Journal of Jilin University:Science Edition
基金
黑龙江省省属高等学校基本科研业务费项目(批准号:1354MSYQN029)
中央财政支持地方高校发展专项基金优秀青年人才支持项目(批准号:ZYQN2019071).