期刊文献+

复杂背景下的小目标检测算法 被引量:17

Small target detection algorithm in complex background
下载PDF
导出
摘要 提出一种改进的多类别单阶检测器(SSD)算法.借鉴特征金字塔算法的思想,将Conv4-3层的特征与Conv7、Conv3-3层的特征进行融合,同时增加融合后特征图每个位置对应的默认框数量.在网络结构中增加裁剪-权重分配网络(SENet),对每层的特征通道进行权重分配,提升有用的特征权重并抑制无效的特征权重.为了增强网络的泛化能力,对训练数据集进行一系列增强处理.实验结果表明,改进后的算法在VOC数据集(07+12)上的检测效果良好,平均精度均值为80.4%,比改进前的算法提高了2.7%;在COCO数据集(2017)上的平均精度均值为42.5%,比改进前的算法提高了2.3%.所提算法能够准确检测出不小于16×16像素的目标. An improved single-shot-multibox-detector(SSD)algorithm was proposed.Referring to the feature pyramid networks(FPN)algorithm,the features of the Conv4-3 layer were merged with the features of Conv7 and Conv3-3 layers,and the number of default boxes at each location in merged feature map was increased.The squeezeand-excitation networks(SENet)was added to the network structure;the feature channels of each layer were weighted,in order to enhance the useful feature weights and suppress the invalid feature weights.A series of enhancements were performed on the training data to enhance the generalization performance of the network.The experimental results show that the improved algorithm has a better performance on the VOC(07+12)dataset;the mean average precision(mAP)value of the improved algorithm is 80.4%,which is 2.7%higher than that of the original algorithm;the mAP value of the improved algorithm on COCO dataset(2017)is 42.5%,which is 2.3%higher than that of the original algorithm.Thus,the proposed algorithm can accurately detect the target with a size of at least 16×16 pixels.
作者 郑浦 白宏阳 李伟 郭宏伟 ZHENG Pu;BAI Hong-yang;LI Wei;GUO Hong-wei(School of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;96037 PLA Troops,Baoji 721000,China)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第9期1777-1784,共8页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(61603189).
关键词 深度学习 目标检测 多类别单阶检测器(SSD)算法 特征融合 特征增强 deep learning target detection single-shot-multibox-detector(SSD)algorithm feature fusion feature enhancement
  • 相关文献

参考文献12

二级参考文献142

  • 1马春庭,郑坚,陈东根,崔亮.地面战场侦察系统多目标识别的评价指标[J].探测与控制学报,2006,28(1):6-9. 被引量:10
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 4王永忠,潘泉,赵春晖,程咏梅.一种对光照变化鲁棒的均值漂移跟踪方法[J].电子与信息学报,2007,29(10):2287-2291. 被引量:5
  • 5王震宇,张可黛,吴毅,卢汉清.基于SVM和AdaBoost的红外目标跟踪[J].中国图象图形学报,2007,12(11):2052-2057. 被引量:11
  • 6Adam A,Rivlin E,Shimshoni I.Robust fragments-basedtracking using theintegral histogram[C]// Proc of the 19th IEEE Computer Vision and Pattern Recognition.LosAlamitos,CA:IEEE Computer Society,2006;798-805.
  • 7Comaniciu D,Ramesh V,Meer P.Kernel-based objecttracking[J],IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(5):564-575.
  • 8Liang D,Huang Q,Jiang S,et al.Mean-shift blob trackingwith adaptive feature selection and scale adaptation[C]//Proc of the 11th IEEE Int Conf on Computer Vision.LosAlamitos,CA:IEEE Computer Society,2007:369-372.
  • 9Ning J,Zhang L,Zhang D,et al.Scale and orientationadaptive mean shift tracking[J].Computer Vision,IET,2012,6(1);52-61.
  • 10Yu T,Wu Y.Differential tracking based on spatial-appearance model (SAM)[C]// Proc of the 19th IEEE Computer Vision and Pattern Recognition.Los Alamitos,CA:IEEE Computer Society,2006:720-727.

共引文献971

同被引文献142

引证文献17

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部