期刊文献+

基于混合测量模式的压缩感知研究 被引量:1

Study on Compressed Sensing based on the Mixed Measuring Model
下载PDF
导出
摘要 基于多层小波变换及压缩感知理论,提出了混合测量模式的压缩感知算法。该算法可以克服已有基于单层小波分解的压缩感知算法对于测量值点数的限制,使得算法更具有实用性。基本思想是对低频系数进行保留,仅对各层高频小波系数进行测量,即对小波系数采取混合测量模式。与经典压缩感知算法相比,在使用较少的测量值情况下,本文算法较好地提升了重构信号的质量。 Based on multilayer wavelet decomposition and compressed sensing theory,a compressed sensing algorithm with mixed measurement mode is proposed.This algorithm can overcome the limitation of existing compressed sensing algorithm based on single-layer wavelet decomposition on the number of measured points,and make the algorithm more practical.The basic idea is to retain the low-frequency coefficients and only measure the high-frequency wavelet coefficients of each layer,that is,the mixed measurement mode is adopted for the wavelet coefficients.Compared with the classical compressed sensing algorithm,in the case of using fewer measurements,the algorithm in this paper can better improve the quality of the reconstructed signal.
作者 杨云仙 梁卫文 YANG Yun-xian;LIANG Wei-wen(Department of Information and Communication,Shenzhen Technician College,Shenzhen 518000,China)
出处 《湖北工业职业技术学院学报》 2020年第3期73-76,共4页 Journal of Hubei Industrial Polytechnic
关键词 混合测量 多层小波变换 压缩感知 信号重构 mixed measuring multilayer wavelet decomposition compressed sensing signal reconstruction.
  • 相关文献

参考文献3

二级参考文献37

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2Donoho D. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 3Candes E. Compressive sampling [C]. Proceedings of the International Congress of Mathmaticians, Madrid, Spain, 2006: 1433-1452.
  • 4Zhao R Z, Liu X Y, and Li C C, et al.. Wavelet denoising via sparse representation [J]. Science in China Series F: Information Sciences, 2009, 52(8): 1371-1377.
  • 5He Z H. Peak transform for efficient image representation and coding [J]. IEEE Transactions on Image Processing, 2007, 16(7): 1741-1754.
  • 6Candes E, Romberg J, and Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [J]. TEEE Transaction on Information Theory, 2006, 52(4): 489-509.
  • 7Tropp J A and Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transaction on Information Theory, 2007, 53(12): 4655-4666.
  • 8Donoho D and Tsaic Y. Extensions of compressed sensing [J].Signal Processing, 2006, 86(3): 533-548.
  • 9Tropp J A.Greed is good: Algorithmic results for sparse approximation [J]. IEEE Transaction on Information Theory, 2004, 50(10): 2231-2242.
  • 10Figueiredo M A T, Nowak R D, and Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problem [J]. Journal of Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 2007, 1(4): 586-598.

共引文献56

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部