期刊文献+

结合光场多线索和大气散射模型的去雾算法 被引量:3

Image dehazing algorithm by combining light field multi-cues and atmospheric scattering model
下载PDF
导出
摘要 雾天拍摄的图像通常会存在对比度低、图像质量差的问题,而这些退化图像会对计算机视觉的应用产生显著的负面影响。针对这些问题,本文首次提出一种将光场与大气散射模型相结合的图像去雾方法。首先利用光场相机捕获多视角信息的优势提取散焦线索和匹配线索估计雾天图像的深度信息,并利用获取的深度信息计算场景初始透射率。然后利用场景深度信息构建新的权重函数,并将其与1-范数上下文规则化相结合对初始透射率图迭代优化。最后利用大气散射模型对光场中心视角图像进行去雾以获得最终的无雾图像。在合成雾天图像和真实雾天图像上的实验结果表明,与现有的单幅图像去雾算法相比,峰值信噪比(PSNR)提高约2d B,结构相似性(SSIM)提高约0.04,本文方法更好地保留了图像的结构信息,同时去雾后的图像较好地保持了图像的色彩信息,能获得更优的图像去雾效果。 Image captured in foggy weather often exhibits low contrast and poor image quality,which may have a negative impact on computer vision applications.Aiming at these problems,we propose an image dehazing algorithm by combining light field technology with atmospheric scattering model.Firstly,taking the advantages of capturing multi-view information from light field camera is used to extracting defocus cues and correspondence cues,which are used to estimating the depth information of hazy images,and use the obtained depth information to calculating the scene’s initial transmission.Then use scene depth information to build a new weight function,and combined it with 1-norm context regularization to optimizing the initial transmission map iteratively.Finally,the central perspective image of hazy light field images is dehazed using atmospheric scattering model to obtain the final dehazed images.Experimental results on synthetic hazy images and real hazy images demonstrate that,compared to existing single image dehazing algorithms,the peak signal to noise ratio get 2 dB improvement and the structural similarity raise about 0.04.Moreover,our approach preserves more fine structural information of images and has faithful color fidelity,thus yielding a superior image dehazing result.
作者 王新 张旭东 张骏 孙锐 Wang Xin;Zhang Xudong;Zhang Jun;Sun Rui(School of Computer Science and Information Engineering,Hefei University of Technology,Hefei,Anhui 230601,China)
出处 《光电工程》 CAS CSCD 北大核心 2020年第9期77-90,共14页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(61876057,61571175)。
关键词 图像去雾 光场 散焦线索 匹配线索 深度估计 大气散射模型 image dehazing light field defocus cues correspondence cues depth estimation atmospheric scattering model
  • 相关文献

参考文献2

二级参考文献11

  • 1Fattal R. Single image dehazing [J]. ACM Transactions on Graphics(TOG), 2008, 27(3): 1-9.
  • 2He K, Sun J, Tang X. Single image haze removal using dark channel prior[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2009: 1956-1963.
  • 3He K, Sun J, Tang X. Guided image filtefing[C]//European Conference on Computer Vision(ECCV), 2010: 1-14.
  • 4Tarel J, Hauti N. Fast visibility restoration from a single color or gray level image[C]//IEEE International Conference on Computer Vision (ICCV), 2009: 2201-2208.
  • 5Caraffa L, Tarel J. Markov random field model for single image defogging [C]//Intelligent Vehicles Symposium, 2013: 994-999.
  • 6Tarel J, Hauti N. ,Vision enhancement in homogeneous and heterogeneous fog [J]. IEEE Intelligent Transportation Systems Magazine, 2012, 4(2): 6-20.
  • 7Krishnan D, Fattal R, Szeliski R. Efficient preconditioning of laplacian matrices for computer graphics [J]. ACM Transaction on Graphics, 2013, 32(4): 1-15.
  • 8黄黎红.退化图像的去雾方法[J].红外与激光工程,2010,39(5):985-988. 被引量:8
  • 9陈舒杭,李子乐,陈梦竹,胡磊,周辉.大气多次散射效应对星载激光测高仪测距偏差值的影响[J].红外与激光工程,2012,41(9):2522-2526. 被引量:7
  • 10葛广一,魏振忠.图像去雾过程中的噪声抑制方法[J].红外与激光工程,2014,43(8):2765-2771. 被引量:10

共引文献17

同被引文献25

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部