摘要
在网络数据爆炸式增长的今天,使用机器学习技术进行数据分析和数据处理是当前研究和应用的重点关注领域。文章针对网络舆情分析问题,介绍使用机器学习分析网络舆情的方法和改进方式。通过计算文本中情感词的情感权重,提高机器学习模型的分析效率和分析准度。通过对酒店评论数据的验证,证明了文章提出的改进方法的有效性,进一步分析了机器学习方法的改进方向。
With the explosive growth of network data,the use of machine learning technology for data analysis and data processing is the focus of current research and application.Aiming at the problem of network public opinion analysis,this paper introduces the method of using machine learning method to analyze network public opinion and the improvement method.It improves the analysis efficiency and accuracy of machine learning model by calculating the emotional weight of sentiment words in text.Through the verification of hotel review data,it proves the effectiveness of the improved method proposed in this paper,and further analyzes the improvement direction of machine learning method.
作者
盖赟
宿培成
Ge Yun;Su Peicheng(Department Of Computer Teaching And Research,University of Chinese Academy of Social Sciences,Beijing,102488)
出处
《科技智囊》
2020年第9期68-72,共5页
Think Tank of Science & Technology
基金
教育部人文社会科学研究青年项目“基于大数据技术分析民众对党的十九大精神的舆情认知研究”(编号:18YJCZH030)
中国社会科学院大学研究项目。
关键词
大数据
机器学习
深度学习
网络舆情
情感分析
Big Data
Machine Learning
Deep Learning
Network Public Opinion
Sentiment Analysis