期刊文献+

Inter-and intramolecular adhesion mechanisms of mussel foot proteins

原文传递
导出
摘要 Mussel foot proteins(Mfps) secreted in the byssal plaque of marine mussels are widely researched for their relevance to mussel adhesion in water. As the abundant residue in the amino acid sequences of major adhesive proteins, 3,4-dihydroxyphenylalanine(Dopa) or its catecholic moiety plays a key role in both Mfp binding to surface and cohesive cross-linking of Mfps in byssal plaques. The binding performance of an Mfp significantly depends on the content and redox state of Dopa, whereas the types of interaction vary in line with different surface chemistries and p H conditions. Thorough understanding of mussel adhesion from a molecular perspective is crucial to promote the application of synthetic mussel-bionic adhesives. This article presents a brief review of the research progress on the adhesion mechanisms of Mfps, which further emphasizes the contributions of Dopamediated interactions and considers other amino acids and factors. The involved inter-and intramolecular interactions are responsible for not only the diverse adhesion capacities of an adhesive byssal plaque as mussel's adhesion precursor but also the formation and properties of the plaque structure.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第9期1675-1698,共24页 中国科学(技术科学英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 51605090) the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20160670 and BK20160776) the Fundamental Research Funds for the Central Universities (Grant No.2242019k1G011)。
  • 相关文献

参考文献1

二级参考文献2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部