期刊文献+

基于卷积神经网络的肝脏肿瘤检测算法及应用研究 被引量:1

Liver Tumor Detection Algorithm Based on Convolution Neural Network and Its Application
下载PDF
导出
摘要 在肝脏肿瘤检测中,现代化信息化诊断技术的应用,不仅提高了诊断效率,还进一步保障了检测结果的准确性。卷积神经网络作为一种新的检测方法,在肝脏肿瘤检测中的构建,获得良好的检测效果。在临床诊断检测中,卷积神经网络的应用,关键在于模型的有效设计,这直接关系卷积神经网络在肝脏肿瘤检测中的应用价值。笔者重点分析了基于卷积神经网络的肝脏肿瘤检测算法,希望能够为相关研究提供借鉴。 In liver tumor detection,the application of modern information diagnosis technology not only improves the diagnostic efficiency,but also further ensures the accuracy of detection results.Convolution neural network,as a new detection method,has been constructed in the detection of liver tumor and achieved good detection effect.In clinical diagnosis and detection,the key to the application of convolutional neural network lies in the effective design of the model,which is directly related to the application value of convolutional neural network in liver tumor detection.The author focuses on the analysis of liver tumor detection algorithm based on convolutional neural network,hoping to provide reference for related research.
作者 徐冬 蒋文娟 Xu Dong;Jiang Wenjuan(Hainan Normal University,Haikou Hainan 571158,China)
机构地区 海南师范大学
出处 《信息与电脑》 2020年第15期67-69,共3页 Information & Computer
基金 省自然科学基金项目“RS-LMBP神经网络在CT图像挖掘上的应用研究”(项目编号:617122) “脑部CT图像分割方法的研究”(项目编号:617119)。
关键词 肝脏肿瘤 卷积神经网络 检测算法 应用 liver tumor convolutional neural network detection algorithm application
  • 相关文献

参考文献5

二级参考文献36

  • 1Vapnik V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2009.
  • 2NelloCristianini JohnShawe-Taylor 李国正 王猛 曾华军译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 3Wang X,Qiu W,Jia Z,et al.Current situation and the latest progress in the diagnosis of breast cancer[J].Clinical Medicineof China,2012,28(8):787-788.
  • 4Boser B E,Guyon I M,Vapnik V N.A training algorithm for optimal margin classifiers[C].5th Annual ACM Workshop onCOLT.Pittsburgh,PA:ACM Press,1992.
  • 5Vapnik V N.The nature of statistical learning theory[M].New York:Springer-Verlag,1995:10-25.
  • 6Wang L P.Support vector machine:Theory and application[M].Berlin:Springer-Verlag,2005:110-121.
  • 7Kreβel U.Pairwise classification and support vector machines[M]∥Advances in Kernel Methods.Cambridge:MIT Press,1999:255-268.
  • 8Martínez J,Iglesias C,Matías J M.Solving the slate tile classification problem using a DAGSVM multiclassification algo-rithm based on SVM binary classifiers with a one-versus-all approach[J].Applied Mathematics and Computation,2014,230:64-472.
  • 9Niu Lingfeng.Parallel algorithm for training multiclass proximal support vector machines[J].Applied Mathematics and Com-putation,2011,217:5328-5337.
  • 10Shao Y H,Chen W J,Huang W B,et al.The best separating decision tree twin support vector machine for multi-class classi-fication[J].Procedia Computer Science,2013,17:1032-1038.

共引文献1875

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部