期刊文献+

脑电信号去伪迹软件的设计与实现 被引量:2

Design and Realization of EEG Signal De-artifacting Software
下载PDF
导出
摘要 脑电是在大脑皮层采集的电信号,可以反映脑神经细胞的电生理活动,通过分析脑电有助于人类在心理学和医学等领域的研究。由于脑电易受非脑神经组织和采集设备干扰产生伪迹,影响科研人员对脑电的分析。基于此,笔者对脑电信号去伪迹软件进行开发,首先对软件进行需求分析和概要设计,将该软件分为输入输出模块、去伪迹处理模块和人机交互界面模块,然后对3大功能模块分别进行详细设计和实现,其中去伪迹处理模块筛选了3种去伪迹技术供科研人员对比去伪迹效果。软件采用Python语言开发,其中人机交互界面采用wxPython。最后,对软件的人机交互界面和去伪迹功能的进行了测试,结果表明软件可进行友好交互,且去伪迹效果较好。 EEG is an electrical signal collected in the cerebral cortex,which can reflect the electrophysiological activity of brain nerve cells.By analyzing the EEG,it can help humans in the fields of psychology and medicine.Because EEG is susceptible to artifacts caused by interference from non-brain nerve tissues and collection equipment,it affects researchers’ analysis of EEG.Based on this,this topic develops the anti-aliasing software for EEG signals.First,the software needs analysis and summary design,the software is divided into three major functional modules:input and output module,anti-aliasing processing module and human-computer interaction interface The module then designs and implements the three major functional modules in detail.The anti-aliasing processing module screens three anti-aliasing techniques:principal component analysis,independent component analysis,and wavelet threshold method for scientific researchers to compare the anti-aliasing effect.The software is developed in Python,and wxPython is used in the human-computer interaction interface.Finally,the software’s human-computer interaction interface and anti-counterfeiting function are tested.The results show that the software can interact with each other and the anti-counterfeiting effect is better.
作者 赵功博 黄缨婷 安宏博 贾巧妹 Zhao Gongbo;Huang Yingting;An Hongbo;Jia Qiaomei(Shaanxi Zhilian Brain Control Technology Co.,Ltd.,Xi'an Shaanxi 710000,China;Northwest University,Xi'an Shaanxi 710000,China)
出处 《信息与电脑》 2020年第15期128-130,共3页 Information & Computer
基金 陕西省科学技术厅陕西省技术创新引导专项(基金)(项目编号:2020CGXNX-027)。
关键词 脑电信号 伪迹去除 眼电伪迹 小波变换 EEG signal artifact removal electrooculogram artifact wavelet transform
  • 相关文献

参考文献1

二级参考文献2

共引文献3

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部