期刊文献+

基于改进的深度Q网络结构的商品推荐模型 被引量:3

Commodity recommendation model based on improved deep Q network structure
下载PDF
导出
摘要 传统推荐方法存在数据稀疏和特征识别差等问题,为了解决这些问题,根据隐式反馈构建具有时序性的正负反馈数据集。由于正负反馈数据集和商品购买具有强时序性特征,引入长短期记忆(LSTM)网络作为模型构件。考虑用户自身特征和用户动作选择回报由不同的输入数据决定,对竞争架构的深度Q网络进行改进,融合用户正负反馈和商品购买时序性,设计了基于改进的深度Q网络结构的商品推荐模型。模型对正负反馈数据进行区分性训练,对商品购买的时序性特征进行提取。在Retailrocket数据集上,与因子分解机(FM)模型、W&D模型和协同过滤(CF)模型中表现最好的相比,所提模型的准确率、召回率、平均准确率(MAP)和归一化折损累计增益(NDCG)分别提高了158.42%、89.81%、95.00%和67.57%。同时,使用DBGD作为探索方法,改善了推荐商品多样性低的缺陷。 Traditional recommendation methods have problems such as data sparsity and poor feature recognition.To solve these problems,positive and negative feedback datasets with time-series property were constructed according to implicit feedback.Since positive and negative feedback datasets and commodity purchases have strong time-series feature,Long Short-Term Memory(LSTM)network was introduced as the component of the model.Considering that the user’s own characteristics and action selection returns are determined by different input data,the deep Q network based on competitive architecture was improved:integrating the user positive and negative feedback and the time-series features of commodity purchases,a commodity recommendation model based on the improved deep Q network structure was designed.In the model,the positive and negative feedback data were trained differently,and the time-series features of the commodity purchases were extracted.On the Retailrocket dataset,compared with the best performance among the Factorization Machine(FM)model,W&D(Wide&Deep learning)and Collaborative Filtering(CF)models,the proposed model has the precision,recall,Mean Average Precision(MAP)and Normalized Discounted Cumulative Gain(NDCG)increased by 158.42%,89.81%,95.00%and 65.67%.At the same time,DBGD(Dueling Bandit Gradient Descent)was used as the exploration method,so as to improve the low diversity problem of recommended commodities.
作者 傅魁 梁少晴 李冰 FU Kui;LIANG Shaoqing;LI Bing(School of Economics,Wuhan University of Technology,Wuhan Hubei 430070,China)
出处 《计算机应用》 CSCD 北大核心 2020年第9期2613-2621,共9页 journal of Computer Applications
基金 教育部人文社会科学研究规划基金资助项目(17YJA870006)。
关键词 深度强化学习 正负反馈数据集 竞争网络架构 长短期记忆网络 商品推荐 deep reinforcement learning positive and negative feedback dataset competitive network architecture Long Short-Term Memory(LSTM)network commodity recommendation
  • 相关文献

参考文献8

二级参考文献65

  • 1杨博,赵鹏飞.推荐算法综述[J].山西大学学报(自然科学版),2011,34(3):337-350. 被引量:87
  • 2姜晓伟,王建民,丁贵广.基于主题模型的微博重要话题发现与排序方法[J].计算机研究与发展,2013,50(S1):179-185. 被引量:12
  • 3周涛.个性化推荐的十大挑战[J].中国计算机学会通讯,2012,8(7):48-61.
  • 4Huang Z, Chen H, Zeng D. Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering [J]. ACM Transactions on Information Systems, 2004, 22(1): 116-142.
  • 5Zhang J Y, Pu P. A Recursive Prediction Algorithm for Collaborative Filtering Recommender Systems [C]. In: Proceedings of the 2007 ACM Conference on Recommender systems, Minneapolis, MN, USA. 2007: 57-64.
  • 6Ma H, King I, Lyu M R. Effective Missing Data Prediction for Collaborative Filtering [C]. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 2007: 39-46.
  • 7Lemire D, Maclachlan A. Slope One Predictors for Online Rating-Based Collaborative Filtering [C]. In: Proceedings of the 2005 SIAM International Conference on Data Mining (SDM'05), Newport Beach,California, USA. 2005.
  • 8Zhang D J. An Item-based Collaborative Filtering Recommendation Algorithm Using Slope One Scheme Smoothing [C]. In: Proceedings of the 2rid International Symposium on Electronic Commerce and Security, Nanchang, China. IEEE, 2009: 215-217.
  • 9Wang P, Ye H W. A Personalized Recommendation Algorithm Combining Slope One Scheme and User Based CollaborativeFiltering [C]. In: Proceedings of the 2009 International Conference on Industrial and Information Systems, Haikou, China. IEEE, 2009: 152-154.
  • 10Chen Y J, Chu H C, Chen Y M, et al. Adapting Domain Ontology for Personalized Knowledge Search and Recommendation [J]. Information & Management, 2013, 50(6): 285-303.

共引文献524

同被引文献38

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部