期刊文献+

论辩挖掘研究综述 被引量:6

Argument Mining Review
原文传递
导出
摘要 [目的/意义]论辩挖掘旨在识别论辩性文本中的论辩结构,从而能够理解结论获得的原因与过程,具有重要的学术和应用价值,近年来在社交媒体内容挖掘、法律辅助判案、决策支持等方面得到了广泛关注,是文本挖掘领域一个新兴研究方向。本文旨在对论辩挖掘的研究与应用现状进行梳理与总结,发掘研究热点,为未来研究提供参考。[方法/过程]在计算语言学会(ACL)数据库和Web of Science数据库中,分别以argument mining、argument structure、argument component为检索词进行检索,结合手工筛选,采集到有关论辩挖掘的文献共220篇,采用精读方式,从论辩模型、论辩挖掘任务和论辩挖掘应用三个方面对当前研究进行了分析与总结。[结果/结论]论辩挖掘的研究才刚刚起步,对社交媒体等简单论辩性文本的研究较多,而对科学论文等复杂论辩性文本的研究较少,未来可从论辩标注方案、论辩成分与关系识别、论辩结构优化三个方面对复杂文本展开研究。 [Purpose/significance]Argument mining can identify the argument structure in argumentative texts,so as to help users to understand the reason and process of drawing a conclusion,and thus has important academic and application value.In recent years,argument mining has obtained great attention in social media content mining,legal assistance judgment,decision support and so on,and become a new research direction in the field of text mining.The purpose of this paper is to sort out and summarize the existing studies and application of argument mining,to discover new research hot spots,and to provide reference for future research.[Method/process]We serched literatures by using the keywords of"argument mining OR argument component OR argument structure OR argumentation mining"from the Web of Science and ACL databases and obtained a total of 220 articles,and then analyzed them from three aspects:argument models,argument mining tasks and argument mining applications by intensive reading and content analysis.[Result/conclusion]The research on argument mining has just started.Existing studies focused more on simple argumentative texts such as social media,and ignored complex argumentative texts such as scientific papers.In future,researchers can focus on the argument mining of complex texts and carry out research from three aspects:argument annotation schemas,the identification of argument components and relationships,and the optimization of argument structures.
作者 李永泽 欧石燕 Li Yongze;Ou Shiyan(School of Information Management,Nanjing University,Nanjing 210023)
出处 《图书情报工作》 CSSCI 北大核心 2020年第19期128-139,共12页 Library and Information Service
基金 国家社会科学基金重点项目"基于关联数据的学术文献内容语义发布及其应用研究"(项目编号:17ATQ001)研究成果之一。
关键词 论辩挖掘 论辩模型 论辩结构 论辩成分 argument mining argument model argument structure argument components
  • 相关文献

参考文献3

二级参考文献54

  • 1Prakken H,Vreeswijk G A W.Encoding Schemes for a Discourse Support System for Legal Argument// Proc of the ECAI Workshop on Computational Models of Natural Argument.Lyon,France,2002:31 -39.
  • 2Janssen T.Toulmin-Based Logic in Policy Decision Making//Miramond M,Gauffre P L,Behesti R,et al,eds.A Critical Review of the Application of Advanced Technologies in Architecture,Civil and Urban Engineering.Paris,France:Europia Productions,1995:315 -332.
  • 3Rowe G,Macagno F,Reed C,et al.Araucaria as a Tool for Diagramming Arguments in Teaching and Studying Philosophy.Teaching Philosophy,2006,29(2):111-124.
  • 4Tweed C.Supporting Argumentation Practices in Urban Planning and Design.Computers,Environment and Urban Systems,1998,22(4):351 -363.
  • 5Dung P M.On the Acceptability of Arguments and Its Fundamental Role in Nonmonotonic Reasoning,Logic Programming and n-Person Games.Artificial Intelligence,1995,77(2):321 -357.
  • 6Alvarado S E,Dyer M G.Analogy Recognition and Comprehension in Editorials//Proc of the 7th Annual Conference of the Cognitive Science Society.Irvine,USA,1985:228-235.
  • 7Amgoud L,Serrurier M.Agents That Argue and Explain Classifications.Autonomous Agents and Multi-Agents Systems,2008,16(2):187 -209.
  • 8Amgoud L,Prade H.Using Arguments for Making and Explaining Decisions.Artificial Intelligence,2009,173(3/4):413-436.
  • 9Amgoud L,Cayrol C.Inferring from Inconsistency in PreferenceBased Argumentation Frameworks.Journal of Automated Reasoning,2002,29(2):125 -169.
  • 10Amgoud L,Kaci S.An Argumentation Framework for Merging Conflicting Knowledge Bases.International Journal of Approximate Reasoning,2007,45(2):321 -340.

共引文献15

同被引文献28

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部