摘要
为了提高大量信息数据快速分析的能力,设计了一种通过内容分块技术来优化层次化冗余去重过程的方法。先分层处理元数据索引表,再以分层方式完成文件级与数据块级冗余去重的过程,之后为数据块级设置了智能化程度更高以及具备更优性能的内容分块优化算法。重点分析了通过内容分块方式实现的层次化去冗优化方案,同时对其开展了系统性测试。根据测试结果评价了各算法处理性能。结果表明,该设计的优化方案可以达到更智能的程度并获得更优的处理效果。
In order to improve the ability of rapid analysis of a large amount of information and data,this paper designs a method to optimize the hierarchical redundant de-duplication process through content partitioning technology.Firstly,the metadata index table is processed hierarchically,and then the process of redundancy and de-duplication at the file level and the data block level is completed in a hierarchical way.After that,the content partition optimization algorithm with higher intelligence degree and better performance is set for the data block level.This paper focuses on analyzing the hierarchical de-redundant optimization scheme by means of content partitioning and carries out systematic testing on it.The performance of each algorithm is evaluated according to the test results.The results show that the optimized scheme designed in this paper can reach a more intelligent level and obtain better processing effect.
作者
付鋆
汪浩
陈运晶
FU Yun;WANG Hao;CHEN Yunjing(Information Center, Guizhou Power Grid Co. Ltd., Guiyang 550002, China)
出处
《微型电脑应用》
2020年第9期89-91,共3页
Microcomputer Applications
关键词
云存储
冗余去重技术
数据分块
层次化
cloud storage
redundancy deduplication technology
data partitioning
hierarchical tructure