期刊文献+

基于安全场改进RRT^*算法的智能汽车路径规划方法 被引量:23

Safety Field-based Improved RRT^*Algorithm for Path Planning of Intelligent Vehicle
下载PDF
导出
摘要 快速搜索随机树(rapidly-exploring random tree,RRT)算法是智能汽车路径规划的常用方法,但传统RRT和RRT^*算法存在路径抖动大、易陷入局部区域和计算效率低等缺点。针对这些问题,本文中结合实车数据提出了一种基于安全场改进RRT^*算法的智能汽车路径规划方法。首先,建立了基于安全距离模型的安全场,通过驾驶数据采集试验对模型关键参数进行了提取;在此基础上,提出了具备安全场引导和角度约束等策略的改进RRT^*算法;最后,通过仿真对算法进行了验证。结果表明,本文提出的路径规划方法能计算出满足车辆轨迹曲率约束的有效路径,同时具有较快的搜索速度和更高的成功率。 Rapidly-exploring random tree(RRT)algorithm is a common algorithm for path planning of intelligent vehicle.But traditional RRT and RRT^*algorithms have disadvantages of large path jitter,easy to fall into local region and low calculation efficiency.In view of these problems,an improved RRT^*algorithm for the path planning of intelligent vehicle based on safety field and real vehicle driving data is proposed in this paper.Firstly,a safety field based on safety distance model is established,and the key parameters of the model are extracted through driving data acquisition test.On this basis,an improved RRT^*algorithm with safety field guidance and angle constraint strategies is proposed.Finally,the algorithm is verified by simulation.The results show that the path planning method proposed can calculate the effective path meeting the curvature constraint of vehicle trajectory with faster search speed and higher success rate.
作者 朱冰 韩嘉懿 赵健 刘帅 邓伟文 Zhu Bing;Han Jiayi;Zhao Jian;Liu Shuai;Deng Weiwen(Jilin University, State Key Laboratory of Automotive Simulation and Control, Changchun 130022;School of Transportation Science and Engineering, Beihang University, Beijing 100083)
出处 《汽车工程》 EI CSCD 北大核心 2020年第9期1145-1150,1182,共7页 Automotive Engineering
基金 国家重点研发计划(2016YFB0100904) 国家自然科学基金(51775235,U1564211) 吉林省自然科学基金(20170101138JC)资助。
关键词 智能汽车 路径规划 RRT^*算法 安全场 驾驶数据 intelligent vehicle path planning RRT^*algorithm safety field driving data
  • 相关文献

参考文献4

二级参考文献17

  • 1景兴建,王越超,谈大龙.人工协调场及其在动态不确定环境下机器人运动规划中的应用[J].中国科学(E辑),2004,34(9):1021-1036. 被引量:11
  • 2刘华军,杨静宇,陆建峰,唐振民,赵春霞,成伟明.移动机器人运动规划研究综述[J].中国工程科学,2006,8(1):85-94. 被引量:74
  • 3张建英,赵志萍,刘暾.基于人工势场法的机器人路径规划[J].哈尔滨工业大学学报,2006,38(8):1306-1309. 被引量:83
  • 4Kyongsu Yi, Minsu Woo, Sung Ha Kim,Seong Chul Lee. An Experimental Investigation of a CW/CA System for Automobile Using Hardware in the Loop Simulation. Proceedings of the American Control Conference, San Diego, California, 1999.
  • 5Seiler Peter, Song Bongsob, Hedriek J, Karl. Development of a Collision Avoidance System. SAE 980853.
  • 6Khatib O.Real-time Obstacle Avoidance for Manipulators and Mobile Robots,Robotics and Automation Proceedings[C].1985 IEEE International Conference.
  • 7Koren Y,Borenstein J.Histogram Inmotion Mapping for Mobile Robot Obstacle Avoidance[J].IF ~ F.E Transactions on Robotics and Automation,1991,7(4):535-539.
  • 8Barraquand J,Latombe J C.A Monte-Carlo Algorithm for Path Planning with Many Degrees of Freedom[C].Proceedings of the 1990 IEEE International Conference on Robotics and Automation.Cincinnati,OH,USA:IEEE,1990:1712-1717.
  • 9Yun X P,Tan K C.A Wall_following Method for Escaping Local Minima in Potential Field Based Motion Planning[C].Proceedings of the 8th International Conference on Advanced Robotics.Monterey,CA:IEEE,1997:421-426.
  • 10Kamon I,Rivin E,Rimon E.A Newrange Sensor Based Globally Convergent Navigation Algorithm for Mobile Robots[C].Proceedings of the 1996 IEEE International Conference on Robotics and Automation.MinneaDolis,MN,USA:IEEE,1996:429-435.

共引文献156

同被引文献179

引证文献23

二级引证文献187

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部