期刊文献+

基于协同过滤和对象模型的音乐推荐系统研究 被引量:3

Research on Music Recommender System Based on Collaborative Filtering and Object Model
下载PDF
导出
摘要 传统的音乐推荐方法在面对诸如新用户,新音乐以及评分稀疏等问题时处理的不够好。基于此,论文提出一种在使用协同过滤算法的基础上融合对象模型的方法。为了解决新用户问题,使用用户画像结合基于用户的协同过滤方法来预测未知评分;为了解决评分稀疏和新音乐问题,未知评分由音乐标签的评分来初始化,然后使用基于商品的协同过滤方法来挖掘用户的偏好。实验结果表明该方法在均方根误差方面比传统的方法具有更好的推荐效果。 Traditional music recommendation methods are not well handled in the face of issues such as new user,new mu⁃sic,and rating sparsity.Based on this,this paper proposes a method of associating the object model with the collaborative filtering algorithm.In order to solve the new user problem,the user profile is combined with the user-based collaborative filtering method to predict the unknown rating.In order to solve the rating sparsity and new music problem,the unknown rating is initialized by the rat⁃ing of the music tag,and then the item-based collaborative filtering method is used to retrieve user preferences.The experimental re⁃sults reveal that,this proposed method performs more promising than the compared methods in terms of Root Mean Squared Error(RMSE).
作者 陈继腾 陈平华 CHEN Jiteng;CHEN Pinghua(School of Computers,Guangdong University of Technology,Guangzhou 510006)
出处 《计算机与数字工程》 2020年第8期1892-1896,1918,共6页 Computer & Digital Engineering
基金 国家自然科学基金项目(编号:61572144) 广东省科技计划项目(编号:2016B030306002,2015B010110001,2017B030307002)资助。
关键词 协同过滤 音乐推荐 用户画像 评分稀疏 collaborative filtering music recommendation user profile rating sparsity
  • 相关文献

参考文献2

二级参考文献101

  • 1秦宇强,张雪英.连续汉语普通话中基于SVM的说话人情感互相关性算法[J].系统工程理论与实践,2011,31(S2):154-159. 被引量:3
  • 2黎星星,黄小琴,朱庆生.电子商务推荐系统研究[J].计算机工程与科学,2004,26(5):7-10. 被引量:46
  • 3张一彬,周杰,边肇祺,郭军.基于内容的音频与音乐分析综述[J].计算机学报,2007,30(5):712-728. 被引量:18
  • 4Cunningham S J, Reeves N, Britland M.Ethnographic study of music information seeking[C]//Proceedings of the 2nd ACM/IEEE-CS Joint Conference on Digital Libraries, 2003.
  • 5Lee J H,Downie J S.Survey of music information needs, uses, and seeking behaviors:preliminary findings[C]//Pro- ceedings of the International Society for Music Informa- tion Retrieval, 2004.
  • 6Tzanetakis G, Cook EMusical genre classification of au- dio signals[J].IEEE Trans on Speech and Audio Process- ing, 2002,10 (5) : 293-302.
  • 7Mcennis D, Mckay C, Fujinaga I, et al.Jaudio: a feature extraction library[C]//Proceedings of the International So- ciety for Music Information Retrieval,2005.
  • 8Gouyou F, Pachet F, Delerue O.Classifying percussive sounds: a matter of zero-crossing rate?[C]//Proceedings of the COST G-6 Conference on Digital Audio Effects,2000.
  • 9Pauws S.PATS:realization and user evaluation of an au- tomatic playlist generator[C]//Proceedings of the Interna- tional Society for Music Information Retrieval,2002.
  • 10Pohle T, Pampalk E, Widmer G.Generating similarity-based playlists using traveling salesman algorithms[C]//Proceed- ings of the 7th International Conference on Digital Au- dio Effects, 2005.

共引文献47

同被引文献24

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部