期刊文献+

基于双卷积神经网络的虚假评论识别 被引量:2

Spam Review Detection Based on Double Convolutional Neural Network
下载PDF
导出
摘要 传统的虚假评论识别方法大多采用机器学习算法,并把虚假评论识别当作一个二分类的任务进行处理,对数据集中的文本数据提取一些关键的特征,并使用机器学习的算法对提取的特征进行训练,从而达到分类的目的。在研究虚假评论特点的基础上,使用卷积神经网络分别对评论文本数据以及评论者行为数据进行处理,融合了评论文本信息和评论者行为信息,提出了基于双卷积神经网络的虚假评论识别方法,经实验验证该方法对虚假评论的识别有较高的准确率。 Most of the traditional false comment recognition methods use machine learning algorithms,and treat false com⁃ment recognition as a binary classification task,extract some key features from the text data in the data set,and use machine learn⁃ing algorithms to perform the extracted features to train the extracted features to achieve the purpose of classification.On the basis of studying the characteristics of false reviews,the convolutional neural network is used to process the review text data and reviewer be⁃havior data separately,and the review text information and reviewer behavior information are combined,and a false review recogni⁃tion based on double convolutional neural network is proposed.Method,it is verified by experiments that this method has a high ac⁃curacy rate in identifying false reviews.
作者 杨超 李天卓 谈森鹏 杨新凯 YANG Chao;LI Tianzhuo;TAN Senpeng;YANG Xinkai(Shanghai Normal University,Shanghai 201400)
机构地区 上海师范大学
出处 《计算机与数字工程》 2020年第8期1954-1957,共4页 Computer & Digital Engineering
关键词 虚假评论识别 卷积神经网络 评论内容 评论者行为 spam review detection convolutional neural network comment content commentator behavior
  • 相关文献

参考文献5

二级参考文献82

  • 1王斌,潘文锋.基于内容的垃圾邮件过滤技术综述[J].中文信息学报,2005,19(5):1-10. 被引量:129
  • 2中国互联网协会.中国互联网协会反垃圾邮件规范[EB/OLl.2003-02-26.http://www.isc.org.cn/20020417/cal34119.htm.
  • 3Becchetti L, Castillo C, Donato D, et al. Link analysis for Web spare detection [J]. ACM Trans Web, 2008,2 (1) : 1-42.
  • 4Cortezp P,Correia A, Sousa P, et al. Spam email filtering using network-level properties I-C]//Proceedings of the 10th industrial conference on Advances in data mining:applications and theoretical aspects. Berlin, Germany.. Springer-Verlag, 2010 :476-489.
  • 5Ghose A, Ipeirotis P G. Designing novel review ranking systems: predicting the usefulness and impact of reviews [C]//Proceedings of the ninth international conference on electronic commere. Minneapolis, MN, USA: ACM, 2007 : 303-310.
  • 6Liu J, Cao Y, Lin C-Y, et al. Low-Quality Product Review Detection in Opinion Summarization [C] // Proceedings of the Joint Conference on Empirical Methods in Natural Language and Computational Natural Language Learning. Prague, 2007:334-342.
  • 7Kim S-M, Pantel P, Chklovskit T, et al. Automatically assessing review helpfulness [C]//Proeeedings of the 2006 Conference on Empirieal Methods in Natural Language Processing. Sydney, Australia; Association for Computational Linguistics, 2006 : 423- 430.
  • 8Zhang Z, Varadaraj an B. Utility scoring of product reviews [ C ]// Proceedings of the 15th ACM international conference on information and knowledge management. Arlington, Virginia, USA:ACM, 2006 :51-57.
  • 9Pang B, Lee L. Opinion Mining and Sentiment Analysis [J].Found Trends InfRetr,2008,2(1/2):1-135.
  • 10Stoyanov V, Cardie C. Topic identification for fine-grained opinion analysis [C]//Proceedings of the 22nd International Conference on Computational Linguistics-Volume 1. Manchester, United Kingdom: Association for Computational Linguistics, 2008.. 817-824.

共引文献56

同被引文献32

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部