期刊文献+

基于深度卷积神经网络的可见光舰船目标识别系统 被引量:1

Ship Recognition From Infrared Images Based on Deep Convolutional Neural Network
下载PDF
导出
摘要 论文针对日益复杂的海面战场环境对舰船目标识别更高识别率、实时性、智能化的需求,进行了基于深度卷积神经网络的可见光舰船目标识别系统的方案设计。可见光舰船目标识别系统由舰船图像采集预处理平台、舰船图像离线训练平台和舰船目标在线识别平台组成,可进行海面舰船、民船的可见光/红外图像采集、处理和存储,可进行基于深度卷积神经网络的舰船目标特征训练和识别,具有较高的目标识别准确率和实时性。 Due to the complex sea battlefield,ship recognition should be more high-accuracy,real-tme and intelligent,a novel ship recognition system from infrared images is proposod based on deep convolutional neural network.The system is consisted of ship image acquisition and preprocessing platform,offline training platform and online target recognition platform.The system can acquire,process and store visible or infrared images of warship and civil ship,and feature training and recognition of ship tar⁃gets are carried out.The proposed system is real-time with high recognition accuracy.
作者 刘宗宝 谭智敏 张力 李之乾 张琨 LIU Zongbao;TAN Zhimin;ZHANG Li;LI Zhiqian;ZHANG Kun(th Institute of the Second Academy of Aerospace Science and Technology of China,Beijing 100854)
出处 《舰船电子工程》 2020年第8期102-106,165,共6页 Ship Electronic Engineering
关键词 舰船识别 可见光图像 卷积神经网络 深度学习 ship recognition visible images convolutional neural network deep learning
  • 相关文献

参考文献5

二级参考文献34

共引文献50

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部