摘要
在传统的情感分类任务中,存在无法有效捕捉文本深层特征的问题,同时也存在不考虑如用户信息和产品信息等分类元数据而直接进行粗糙建模的问题.针对第一个问题,本文首先通过深度BLSTM(DBLSTM)来识别上下文词义联系和获取文本深层特征;其次利用自注意力机制网络层捕获文本中重要的特征.针对第二个问题,本文融合分类元数据自定义分类器,该分类器利用上下文感知注意力为分类元数据配制特定参数,这使得分类器可以参考文本中存在的不同分类元数据来对网络层提取到的特征做出综合评价分类.在Yelp2013、Yelp2014、IMDB等三个数据集上测试,实验结果显示,本文构建的模型与现有的多个基线情感分类模型相比效果均有一定的提高.
In the traditional sentiment classification task,there is a problem that the deep features of the text cannot be effectively captured,and there is also a problem of directly performing rough modeling without considering categorical metadata such as user information and product information.For the first problem,this paper firstly identifies the contextual meaning and the deep features of the text through deep BLSTM.Secondly,it uses the self-attention mechanism network layer to capture the important features in the text.For the second problem,This article combines categorical metadata custom classifier.The classifier uses context-aware attention to formulate specific parameters for categorical metadata,which enables the classifier to make a comprehensive evaluation classification of the features extracted by the network layer by referring to different categorical metadata existing in the text.Tested on three data sets,such as Yelp2013,Yelp2014,and IMDB,the experimental results show that the model constructed in this paper has a certain improvement compared with the existing multiple baseline sentiment classification models.
作者
杨春霞
李欣栩
瞿涛
秦家鹏
YANG Chun-xia;LI Xin-xu;QU Tao;QIN Jia-peng(Nanjing University of Information Science&Technology,Automation Institute,Nanjing 210044,China;Jiangsu Key Laboratory of Big Data Analysis Technology(B-DAT),Nanjing 210044,China;Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET),Nanjing 210044,China)
出处
《小型微型计算机系统》
CSCD
北大核心
2020年第9期1853-1857,共5页
Journal of Chinese Computer Systems
基金
国家自然科学基金项目(61273229)资助
江苏省青蓝工程项目资助。
关键词
情感分类
文本特征提取
注意力机制
分类元数据
深度BLSTM
sentiment classification
text feature extraction
attention mechanism
categorical metadata
deep BLSTM