期刊文献+

一种结合压缩激发块和CNN的文本分类模型 被引量:4

Text Classification Model with Squeeze-and-excitation Block and CNN
下载PDF
导出
摘要 针对单一卷积神经网络进行文本分类,容易出现忽视局部与整体之间关联性的问题,本文构建了一种基于压缩激发块的卷积神经网络文本分类模型,提高文本分类的精确度.主要工作分为三部分:1)使用字符级词向量作为卷积神经网络的输入;2)引入压缩-激发块学习使用全局信息,有选择地强调有用的特征,来增加提取特征的多样性,弥补单一卷积神经网络多样性的不足;3)使用多头注意力机制进行权重更新计算,突出类别向量的重要程度.实验结果显示,本文提出的文本分类模型,在THUCNews数据集和搜狐数据集上,比单一的字符级卷积神经网络模型精确度分别提高了2.29%、4.75%. Aiming at the problem of ignoring the relevance between the part and the whole when text classification is carried out by single convolutional neural network,this paper constructs a text classification model of convolutional neural network based on extruded excitation blocks to improve the accuracy of text classification.The main work is divided into three parts:1)To use char-level word vector as the input of convolutional neural network;2)Introduce Squeeze-and-Excitation block to learn to use global information,the useful features are selectively emphasized to increase the diversity of feature extraction and make up for the lack of diversity of single convolutional neural network;3)To use Multi-Head Attention mechanism weight updating calculation,highlight the importance of class vector.The experimental results shows that the text classification model proposed in this paper improves the precision of the THUCNews data set and sohu data set by 2.29%and 4.75%,respectively,compared with the single character-level convolutional neural network model.
作者 陶永才 刘亚培 马建红 李琳娜 石磊 卫琳 TAO Yong-cai;LIU Ya-pei;MA Jian-hong;LI Lin-na;SHI Lei;WEI Lin(School of Information Engineering,Zhengzhou University,Zhengzhou 450001,China;School of Software,Zhengzhou University,Zhengzhou 450002,China;Institute of Scientific and Technical Information of China,Beijing 100038,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2020年第9期1925-1929,共5页 Journal of Chinese Computer Systems
基金 科技部重点研发计划项目(2018YFB1701400)资助 郑州大学青年骨干教师培养计划项目(2017ZDGGJS048)资助。
关键词 字符级 压缩—激发块 多头注意力机制 文本分类 character level squeeze-and-excitation block multi-head attention text classification
  • 相关文献

参考文献4

二级参考文献76

  • 1翟林,刘亚军.支持向量机的中文文本分类研究[J].计算机与数字工程,2005,33(3):21-23. 被引量:14
  • 2李荣艳,金鑫,王春辉,郑宁,别荣芳.一种新的中文文本分类算法[J].北京师范大学学报(自然科学版),2006,42(5):501-505. 被引量:6
  • 3史忠值.神经网络[M].北京:高等教育出版社,2009.
  • 4李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 5Rumelhart D,Hinton G,Williams R.Learning representationsby back-propagating errors[J].Nature,1986,323(6088):533-536.
  • 6Hinton G,Salakhutdinov R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
  • 7Ding Shi-fei,Zhang Yan-an,Chen Jin-rong,et al.Research onUsing Genetic Algorithms to Optimize Elman Neural Networks[J].Neural Computing and Applications,2013,23(2):293-297.
  • 8Ding Shi-fei,Jia Wei-kuan,Su Chun-yang,et al.Research ofNeural Network Algorithm Based on Factor Analysis and Cluster Analysis[J].Neural Computing and Applications,2011,20(2):297-302.
  • 9Lee T S,Mumford D.Hierarchical Bayesian inference in the vi-sual cortex[J].Optical Society of America,2003,20(7):1434-1448.
  • 10Serre T,Wolf L,Bileschi S,et al.Robust object recognition with cortex-like mechanisms[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(3):411-426.

共引文献1931

同被引文献26

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部