期刊文献+

孔洞排布对PMMA多孔材料冲击响应行为的影响 被引量:3

Effect of Voids Arrangement on Behavior of PMMA Cellular Materials on Impact Loading
下载PDF
导出
摘要 多孔材料具有轻质、缓冲减震、吸能等特点,在加载路径调控、爆炸或冲击防护领域具有广泛的应用前景。采用格点-弹簧模型(离散元方法),模拟多种孔洞排布方式的PMMA多孔材料在冲击加载过程中的早期孔洞塌缩破坏、应力分布与粒子速度等冲击响应行为。结果表明:在冲击加载过程中,裂纹萌发于孔洞侧向(垂直于冲击波方向)附近区域,孔洞破坏形式以剪切断裂为主;在不同的孔洞排列模型中,孔洞与孔洞之间均存在剪切裂纹相互贯通现象,促进孔洞体积压缩致密化,且孔洞排列方式不影响冲击波传播速度;四角点阵模型有效减缓孔洞附近区域的应力集中;四角点阵、三角点阵、锥形递减排列、锥形递增排列模型都显著影响PMMA多孔材料的冲击波阵面平整性;孔洞的随机排列模型对降低粒子速度最有效,四角点阵排列模型对降低波阵面后压力贡献最大。 Cellular materials,characterized by their light weight and energy absorbing,etc.,have broad potential applications in the fields of loading-path control,explosion and impact protection.In this paper,the discrete element method of lattice-spring model is utilized to simulate the early impact response of PMMA cellular materials with different arrangement models of voids during the impact loading process.The early void collapse failure,stress distribution and particle velocity of materials with various arrangement models are investigated.Our results show that the arrangement of voids affect the particle velocity but not the shock wave velocity.The cracks are germinated in the area near the longitudinal direction of the void,and the failure mode of the void is mainly shear failure.In different arrangement models of voids,there is a phenomenon of shear cracks interpenetrating between the holes,which promotes the compression of the volume.The square lattice and triangular lattice arrangement models prominently slow the stress concentration and plastic deformation rate of voids in the nearby area.The square lattice,triangular lattice,decreasing arrangement and increasing arrangement significantly have a remarkable influence on the flatness of the shock wave front of PMMA cellular materials.The random arrangement is the most effective one to reduce the particle velocity,and the square lattice contributes most to the post-pressure reduction of the wave front.
作者 罗国强 费细欢 喻寅 张睿智 张成成 沈强 LUO Guoqiang;FEI Xihuan;YU Yin;ZHANG Ruizhi;ZHANG Chengcheng;SHEN Qiang(State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,Hubei,China;National Key Laboratory of Shock Wave and Detonation Physics,Institute of Fluid Physics,CAEP,Mianyang 621999,Sichuan,China)
出处 《高压物理学报》 EI CAS CSCD 北大核心 2020年第5期122-131,共10页 Chinese Journal of High Pressure Physics
基金 国家自然科学基金重点项目(51932006) 湖北省技术创新专项重大项目(2019AFA176)。
关键词 多孔材料 孔洞排列模型 冲击波 冲击加载 cellular materials arrangement model of voids shock wave impact loading
  • 相关文献

参考文献6

  • 1喻寅,王文强,杨佳,张友君,蒋冬冬,贺红亮.多孔脆性介质冲击波压缩破坏的细观机理和图像[J].物理学报,2012,61(4):483-489. 被引量:10
  • 2许爱国,张广财,蔚喜军,潘小飞,朱建士.冲击作用下多孔材料热力学特征的模拟与分析[J].中国工程科学,2009,11(9):13-19. 被引量:2
  • 3喻寅,李媛媛,贺红亮,王文强.脆性材料动态断裂的介观格子模型[J].高压物理学报,2019,33(3):74-90. 被引量:1
  • 4杜艾,周斌,沈洋,黄秀光,叶君健,谢志勇,傅思祖,沈军.激光准等熵压缩实验中阻抗梯度飞片的制备技术简介[J].原子能科学技术,2014,48(11):2158-2164. 被引量:1
  • 5姜太龙,喻寅,宦强,李永强,贺红亮.设计脆性材料的冲击塑性[J].物理学报,2015,64(18):456-463. 被引量:2
  • 6M.Ablikim,M.N.Achasov,P.Adlarson,S.Ahmed,M.Albrecht,M.Alekseev,A.Amoroso,F.F.An,Q.An,Y.Bai,O.Bakina,R.Baldini Ferroli,Y.Ban,K.Begzsuren,J.V.Bennett,N.Berger,M.Bertani,D.Bettoni,F.Bianchi,J Biernat,J.Bloms,I.Boyko,R.A.Briere,L.Calibbi,H.Cai,X.Cai,A.Calcaterra,G.F.Cao,N.Cao,S.A.Cetin,J.Chai,J.F.Chang,W.L.Chang,J.Charles,G.Chelkov,Chen,G.Chen,H.S.Chen,J.C.Chen,M.L.Chen,S.J.Chen,Y.B.Chen,H.Y.Cheng,W.Cheng,G.Cibinetto,F.Cossio,X.F.Cui,H.L.Dai,J.P.Dai,X.C.Dai,A.Dbeyssi,D.Dedovich,Z.Y.Deng,A.Denig,Denysenko,M.Destefanis,S.Descotes-Genon,F.De Mori,Y.Ding,C.Dong,J.Dong,L.Y.Dong,M.Y.Dong,Z.L.Dou,S.X.Du,S.I.Eidelman,J.Z.Fan,J.Fang,S.S.Fang,Y.Fang,R.Farinelli,L.Fava,F.Feldbauer,G.Felici,C.Q.Feng,M.Fritsch,C.D.Fu,Y.Fu,Q.Gao,X.L.Gao,Y.Gao,Y.Gao,Y.G.Gao,Z.Gao,B.Garillon,I.Garzia,E.M.Gersabeck,A.Gilman,K.Goetzen,L.Gong,W.X.Gong,W.Gradl,M.Greco,L.M.Gu,M.H.Gu,Y.T.Gu,A.Q.Guo,F.K.Guo,L.B.Guo,R.P.Guo,Y.P.Guo,A.Guskov,S.Han,X.Q.Hao,F.A.Harris,K.L.He,F.H.Heinsius,T.Held,Y.K.Heng,Y.R.Hou,Z.L.Hou,H.M.Hu,J.F.Hu,T.Hu,Y.Hu,G.S.Huang,J.S.Huang,X.T.Huang,X.Z.Huang,Z.L.Huang,N.Huesken,T.Hussain,W.Ikegami Andersson,W.Imoehl,M.Irshad,Q.Ji,Q.P.Ji,X.B.Ji,X.L.Ji,H.L.Jiang,X.S.Jiang,X.Y.Jiang,J.B.Jiao,Z.Jiao,D.P.Jin,S.Jin,Y.Jin,T.Johansson,N.Kalantar-Nayestanaki,X.S.Kang,R.Kappert,M.Kavatsyuk,B.C.Ke,I.K.Keshk,T.Khan,A.Khoukaz,P.Kiese,R.Kiuchi,R.Kliemt,L.Koch,O.B.Kolcu,B.Kopf,M.Kuemmel,M.Kuessner,A.Kupsc,M.Kurth,M.G.Kurth,W.Kuhn,J.S.Lange,P.Larin,L.Lavezzi,H.Leithoff,T.Lenz,C.Li,Cheng Li,D.M.Li,F.Li,F.Y.Li,G.Li,H.B.Li,H.J.Li,J.C.Li,J.W.Li,Ke Li,L.K.Li,Lei Li,P.L.Li,P.R.Li,Q.Y.Li,W.D.Li,W.G.Li,X.H.Li,X.L.Li,X.N.Li,X.Q.Li,Z.B.Li,H.Liang,H.Liang,Y.F.Liang,Y.T.Liang,G.R.Liao,L.Z.Liao,J.Libby,C.X.Lin,D.X.Lin,Y.J.Lin,B.Liu,B.J.Liu,C.X.Liu,D.Liu,D.Y.Liu,F.H.Liu,Fang Liu,Feng Liu,H.B.Liu,H.M.Liu,Huanhuan Liu,Huihui Liu,J.B.Liu,J.Y.Liu,K.Y.Liu,Ke Liu,Q.Liu,S.B.Liu,T.Liu,X.Liu,X.Y.Liu,Y.B.Liu,Z.A.Liu,Zhiqing Liu,Y.F.Long,X.C.Lou,H.J.Lu,J.D.Lu,J.G.Lu,Y.Lu,Y.P.Lu,C.L.Luo,M.X.Luo,P.W.Luo,T.Luo,X.L.Luo,S.Lusso,X.R.Lyu,F.C.Ma,H.L.Ma,L.L.Ma,M.M.Ma,Q.M.Ma,X.N.Ma,X.X.Ma,X.Y.Ma,Y.M.Ma,F.E.Maas,M.Maggiora,S.Maldaner,S.Malde,Q.A.Malik,A.Mangoni,Y.J.Mao,Z.P.Mao,S.Marcello,Z.X.Meng,J.G.Messchendorp,G.Mezzadri,J.Min,T.J.Min,R.E.Mitchell,X.H.Mo,Y.J.Mo,C.Morales Morales,N.Yu.Muchnoi,H.Muramatsu,A.Mustafa,S.Nakhoul,Y.Nefedov,F.Nerling,I.B.Nikolaev,Z.Ning,S.Nisar,S.L.Niu,S.L.Olsen,Q.Ouyang,S.Pacetti,Y.Pan,M.Papenbrock,P.Patteri,M.Pelizaeus,H.P.Peng,K.Peters,A.A.Petrov,J.Pettersson,J.L.Ping,R.G.Ping,A.Pitka,R.Poling,V.Prasad,M.Qi,T.Y.Qi,S.Qian,C.F.Qiao,N.Qin,X.P.Qin,X.S.Qin,Z.H.Qin,J.F.Qiu,S.Q.Qu,K.H.Rashid,C.F.Redmer,M.Richter,M.Ripka,A.Rivetti,V.Rodin,M.Rolo,G.Rong,J.L.Rosner,Ch.Rosner,M.Rump,A.Sarantsev,M.Savrie,K.Schoenning,W.Shan,X.Y.Shan,M.Shao,C.P.Shen,P.X.Shen,X.Y.Shen,H.Y.Sheng,X.Shi,X.D Shi,J.J.Song,Q.Q.Song,X.Y.Song,S.Sosio,C.Sowa,S.Spataro,F.F.Sui,G.X.Sun,J.F.Sun,L.Sun,S.S.Sun,X.H.Sun,Y.J.Sun,Y.K Sun,Y.Z.Sun,Z.J.Sun,Z.T.Sun,Y.T Tan,C.J.Tang,G.Y.Tang,X.Tang,V.Thoren,B.Tsednee,I.Uman,B.Wang,B.L.Wang,C.W.Wang,D.Y.Wang,H.H.Wang,K.Wang,L.L.Wang,L.S.Wang,M.Wang,M.Z.Wang,Wang Meng,P.L.Wang,R.M.Wang,W.P.Wang,X.Wang,X.F.Wang,X.L.Wang,Y.Wang,Y.F.Wang,Z.Wang,Z.G.Wang,Z.Y.Wang,Zongyuan Wang,T.Weber,D.H.Wei,P.Weidenkaff,H.W.Wen,S.P.Wen,U.Wiedner,G.Wilkinson,M.Wolke,L.H.Wu,L.J.Wu,Z.Wu,L.Xia,Y.Xia,S.Y.Xiao,Y.J.Xiao,Z.J.Xiao,Y.G.Xie,Y.H.Xie,T.Y.Xing,X.A.Xiong,Q.L.Xiu,G.F.Xu,L.Xu,Q.J.Xu,W.Xu,X.P.Xu,F.Yan,L.Yan,W.B.Yan,W.C.Yan,Y.H.Yan,H.J.Yang,H.X.Yang,L.Yang,R.X.Yang,S.L.Yang,Y.H.Yang,Y.X.Yang,Yifan Yang,Z.Q.Yang,M.Ye,M.H.Ye,J.H.Yin,Z.Y.You,B.X.Yu,C.X.Yu,J.S.Yu,C.Z.Yuan,X.Q.Yuan,Y.Yuan,A.Yuncu,A.A.Zafar,Y.Zeng,B.X.Zhang,B.Y.Zhang,C.C.Zhang,D.H.Zhang,H.H.Zhang,H.Y.Zhang,J.Zhang,J.L.Zhang,J.Q.Zhang,J.W.Zhang,J.Y.Zhang,J.Z.Zhang,K.Zhang,L.Zhang,S.F.Zhang,T.J.Zhang,X.Y.Zhang,Y.Zhang,Y.H.Zhang,Y.T.Zhang,Yang Zhang,Yao Zhang,Yi Zhang,Yu Zhang,Z.H.Zhang,Z.P.Zhang,Z.Q.Zhang,Z.Y.Zhang,G.Zhao,J.W.Zhao,J.Y.Zhao,J.Z.Zhao,Lei Zhao,Ling Zhao,M.G.Zhao,Q.Zhao,S.J.Zhao,T.C.Zhao,Y.B.Zhao,Z.G.Zhao,A.Zhemchugov,B.Zheng,J.P.Zheng,Y.Zheng,Y.H.Zheng,B.Zhong,L.Zhou,L.P.Zhou,Q.Zhou,X.Zhou,X.K.Zhou,Xingyu Zhou,Xiaoyu Zhou,Xu Zhou,A.N.Zhu,J.Zhu,J.Zhu,K.Zhu,K.J.Zhu,S.H.Zhu,W.J.Zhu,X.L.Zhu,Y.C.Zhu,Y.S.Zhu,Z.A.Zhu,J.Zhuang,B.S.Zou,J.H.Zou,无.Future Physics Programme of BESⅢ[J].Chinese Physics C,2020,44(4). 被引量:538

二级参考文献73

共引文献548

同被引文献27

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部