期刊文献+

从齐次核向非齐次核发展的Hilbert型积分不等式的研究进展 被引量:1

Progress in the Study of Hilbert-Type Integral Inequalities from Homogeneous Kernels to Non-Homogeneous Kernels
下载PDF
导出
摘要 Hilbert型积分不等式理论由于在积分算子的有界性及算子范数的研究中具有重要意义,因此近年来得到了较快发展.从最初对齐次核情形的讨论逐步向非齐次核情形扩展,已形成较为完整的理论体系.对这一发展过程及目前的研究现状进行综述,系统地展现Hilbert型积分不等式理论从齐次核向非齐次核发展的研究脉络. Hilbert-type integral inequality theory,due to its significance in the study of boundedness and operator norm of integral operator,it has been developed more rapidly in recent years.Gradually expanding from the initial discussion of homogeneous case to non-homogeneous case,a more complete theoretical system has been formed.This paper provides an overview of this development process and the current state of research,systematically demonstrates the development of Hilbert-type integral inequalities from homogeneous kernels to nonhomogeneous kernels.
作者 洪勇 HONG Yong(Department of Mathematics,Guangdong Baiyun University,Guangzhou,Guangdong,510450,P.R.China;School of Mathematics and Statistics,Guangdong University of Finance and Economics,Guangzhou,Guangdong,510320,P.R.China)
出处 《广东第二师范学院学报》 2020年第5期10-18,共9页 Journal of Guangdong University of Education
关键词 HILBERT型积分不等式 齐次核 非齐次核 研究进展 研究现状 理论体系 Hilbert-type integral inequality homogeneous kernel non-homogeneous kernel research progress research status theoretical system
  • 相关文献

参考文献7

二级参考文献38

共引文献78

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部