期刊文献+

随机Dirichlet级数的广义Hadamard乘积的增长性

The growth of generalized Dirichlet-Hadamard product of random dirichlet series
下载PDF
导出
摘要 通过引入随机Dirichlet级数的广义Hadamard乘积级数,文章讨论了乘积级数的增长性,得到了乘积级数与原级数若干涉及收敛横坐标,q-级、下q-级、q-型与下q-型的关系定理,改进了先前的一些结果。 By introducing a generalized Dirichlet-Hadamard product of random Dirichlet Series,we investigate the growth of the generalized Dirichlet-Hadamard product series,and obtain some relationship theorems concerning the(lower)q-order,(lower)q-type,perfectly regular growth between the generalized random Dirichlet-Hadamard product series and the random Dirichlet Series,which are some improvements of the previous results given by Li and Kong.
作者 崔永琴 徐洪焱 CUI Yongqin;XU Hongyan(Department of Informatics and Engineering,Jingdezhen Ceramic Institute,Jiangxi Jingdezhen 333403,China;School of Mathematics and Computer Science,Shangrao Normal University,Shangrao Jiangxi 334001,China)
出处 《南昌大学学报(理科版)》 CAS 北大核心 2020年第3期210-218,共9页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(11561033) 江西省自然科学基金资助项目(20181BAB201001) 江西省教育厅科学技术研究资助项目(GJJ190876,GJJ191042,GJJ190895)。
关键词 Dirichlet-Hadamard乘积 随机DIRICHLET级数 完全正规增长 generalized Dirichlet-Hadamard product Random Dirichlet series perfect regular growth
  • 相关文献

参考文献7

二级参考文献43

  • 1余家荣.BOREL LINES OF RANDOM DIRICHLET SERIES[J].Acta Mathematica Scientia,2002,22(1):1-8. 被引量:2
  • 2高宗升,孙道椿.无限级随机Dirichlet级数的值分布[J].数学年刊(A辑),1993,1(6):677-685. 被引量:26
  • 3高宗升,孙道椿.关于Taylor级数的正规增长性[J].数学物理学报(A辑),1997,17(1):111-120. 被引量:11
  • 4孙道椿.Nevanlinna方向的存在性定理[J].数学年刊:A辑,1986,(2):7-221.
  • 5Valiron G., Entire function and Borel's directions, Proc. Nat. Acad. Sci. USA, 1934, 20:211-215.
  • 6Bajpai S. K., Kapoor G. P., Juneja O. P., On entire function of fast growth, Trans. Amer. Math. Soc., 1975, 203:275-297.
  • 7Sayyed K. A. M., Metally M. S., Mohamed M. T., Some orders and types of generalized Hadamard product of entire functions, Southeast Asian Bulletin of Mathematics, 2002, 26:121-132.
  • 8Choi J. tI., Kim Y. C., Owa S., Generalization of Hadamard Products of functions with negative coefficients, J. Math. Anal. Appl., 1999: 495-501.
  • 9Yu J. R., Dirichlet Series and Random Dirichlet Series, Beijing: Science Press, 1997.
  • 10Gao Z. S., Sun D. C., Random Dirichlet series dealing with small functions, Acre Mathernatica Sinica, Chinese Series, 2003, 46(2): 397-402.

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部