摘要
针对旋转机械滚动轴承的故障问题,本文提出了一种时域故障诊断方法。首先对滚动轴承的原始振动信号进行3层的小波包分解,并选取前4个小波系数进行重构,接着在时域分析上对每1个小波系数分别提取7个特征值,然后通过BP神经网络获得滚动轴承故障分类的结果。最终实验表明,该方法有效地解决了滚动轴承存在的故障问题,确保了旋转机械安全、可靠、稳定地运行。
Aiming at the fault problem of rolling bearings in rotating machinery,this paper proposes a time domain fault diagnosis method.Firstly,the vibration signal of the rolling bearing is decomposed by 3 layers of wavelet packet,and the first four wavelet coefficients are selected for reconstruction.Then,in the time domain analysis,7 eigenvalues are extracted for each wavelet coefficient,and then the rolling bearing fault classification results are obtained by BP neural network.Finally,the experimental results show that the method can effectively solve the problem of rolling bearing fault and ensure the safe,reliable and stable operation of rotating machinery.
作者
林水泉
LIN Shui-quan(Guangdong Provincial Key Laboratory of Petrochemical Equipment Fault Diagnosis,Guangdong Universtity of Petrochemical Technology,Maoming 525000 China)
出处
《自动化技术与应用》
2020年第8期1-5,35,共6页
Techniques of Automation and Applications
基金
茂名市科技计划广东石油化工学院、茂名职业技术学院专项资金资助项目(编号MM2017000005)
广东石油化工学院科研基金项目(编号2017qn41)
广东省石油化工装备工程技术研究中心开放基金项目(编号2017JJ517010)
茂名市石油化工自动化工程技术研究开发中心开放基金项目(编号702/517013)。
关键词
旋转机械
滚动轴承
时域分析
故障诊断
rotating machinery
rolling bearing
time domain analysis
fault diagnosis