摘要
在大数据模式下,信息采集、共享、分析、处理等越来越便利,可充分利用大数据优势,在传统企业信用评价的基础上,引入管理层、合作伙伴、社会等信用搭建了一种新的评价体系。利用层次分析法同时引入模糊数学理论,建立了企业信用风险评价模型,包括:权重、定量指标隶属度、信用等级高低等。把评价指标体系中的各项指标按合理的权重进行量化,从而建立一个可普适于大多数企业的信用评价模型。
In the big data mode, information collection, sharing, analysis and processing are increasingly convenient. Making full use of the advantages of big data, a new evaluation system is built by introducing management, partners and social credit on the basis of traditional enterprise credit evaluation. By using AHP and introducing fuzzy mathematics theory, the credit risk evaluation model of enterprises is established, including weight, membership degree of quantitative index and credit grade. By quantifying each index according to reasonable weight in the evaluation index system, a credit evaluation model which is universally suitable for most enterprises is established.
作者
相辉
张弘媛
张静
蔡鹏飞
李昊兰
XIANG Hui;ZHANG Hong-yuan;ZHANG Jing;CAI Peng-fei;LI Hao-lan(State Grid Hebei Procurement Company,Shijiazhuang 050000 China)
出处
《自动化技术与应用》
2020年第8期48-50,55,共4页
Techniques of Automation and Applications
关键词
信用评价
层次分析法
大数据
credit evaluation
analytic hierarchy process
Big Data