摘要
本文主要针对基于图像的工业机器人,对其视觉伺服控制系统进行了研究,为弥补雅可比矩阵计算的难度较大的劣势,利用遗传神经网络,完成了六关节机器人视觉伺服系统的设计,降低了系统求解雅克比矩阵及其逆的计算量,使控制系统的控制过程得以有效简化,实验结果表明本文所设计的机器人视觉伺服系统在保证控制系统精度的基础上提高了速度,能使机器人的运动到期望点,具有较高的实际应用价值。
In this paper, the visual servo control system of image-based industrial robot is studied. In order to make up for the disadvantage of difficult calculation of Jacobian Matrix, the design of visual servo system of six-joint robot is completed by using genetic neural network, which reduces the solution of Jacobian matrix and its inverse. The experimental results show that the robot visual servo system designed in this paper can improve the speed on the basis of ensuring the accuracy of the control system, and make the robot move to the desired point. It has a high practical value.
作者
杨军莉
YANG Jun-li(Shaanxi Technical College of Finance&Economics School of Management,Xianyang 712000 China)
出处
《自动化技术与应用》
2020年第8期66-69,73,共5页
Techniques of Automation and Applications